# MÜLLER-BBM

Müller-BBM Industry Solutions GmbH Niederlassung Nürnberg Fürther Straße 35 90513 Zirndorf

Telefon +49(911)600445 0 Telefax +49(911)600445 11

www.mbbm-ind.com

Dipl.-Ing. (FH) Frank Ellner-Schuberth Telefon +49(911)600445 15 frank.ellner-schuberth@mbbm-ind.com

12. Dezember 2024 M175121/05 Version 1 ELR/MNR

# **BHI GmbH**

# Bericht über die Durchführung von Emissionsmessungen

Biomasseheizkraftwerk Ilmenau

Bericht Nr. M175121/05

Betreiber: BHI GmbH

Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Standort: Gewerbepark "Am Wald" 18 a

98693 Ilmenau

Anlage: Biomasseheizkraftwerk

Datum der Messung: 25.-27.09.2024

Berichtsumfang: insgesamt 57 Seiten

inkl. 27 Seiten Anlagen

Müller-BBM Industry Solutions GmbH Niederlassung Nürnberg HRB München 86143 USt-IdNr. DE812167190

Geschäftsführer: Joachim Bittner, Manuel Männel, Dr. Alexander Ropertz

### Zusammenfassung

### Emissionsquelle

### Kamin des Biomasseheizkraftwerks

Die angegebenen Massenkonzentrationen beziehen sich auf das trockene Abgas im Normzustand (273 K, 1013 hPa) und einen Sauerstoffbezugswert von 11 Vol.-%.

Tabelle 0.1. Zusammenfassung der Messergebnisse - Massenkonzentrationen.

| Komponente                                                                                             |    | Einheit | Y <sub>max</sub> -U <sub>P</sub> *) | Y <sub>max</sub> +U <sub>P</sub> *) | Grenzwert | Vertrauens-<br>grenze**) | Betriebszustand |
|--------------------------------------------------------------------------------------------------------|----|---------|-------------------------------------|-------------------------------------|-----------|--------------------------|-----------------|
| Hg                                                                                                     |    | mg/m³,N | 0,00                                | 0,00                                | 0,01      | 0,00                     |                 |
| HCN                                                                                                    |    | mg/m³,N | 0                                   | 0                                   | -         | 0                        |                 |
| HF                                                                                                     |    | mg/m³,N | 0,0                                 | 0,0                                 | 0,9       | 0,0                      |                 |
| N₂O                                                                                                    |    | mg/m³,N | 0                                   | 36                                  | -         | 18                       | Dampfmenge      |
| Schwermetalle (Cd, Tl) nach § 8<br>(1) 3, Anlage 1 a der 17. BlmSchV                                   |    | mg/m³,N | 0,00                                | 0,00                                | 0,02      | 0,00                     |                 |
| Schwermetalle (Sb, As, Pb, Cr, Co,<br>Cu, Mn, Ni, V, Sn) nach § 8 (1) 3,<br>Anlage 1 b der 17. BlmSchV |    | mg/m³,N | 0,0                                 | 0,0                                 | 0,3       | 0,0                      | 23 - 25 t/h     |
| Stoffe nach § 8 (1) 3, Anlage 1 c<br>der 17. BlmSchV                                                   | 2) | mg/m³,N | 0,00                                | 0,00                                | 0,05      | 0,00                     |                 |
| PCDD/F + dl-PCB                                                                                        | 1) | ng/m³,N | 0,00                                | 0,00                                | 0,08      | 0,00                     |                 |

<sup>\*)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

 $Y_{\text{max}}$ : maximaler Messw ert

U<sub>P</sub>: Messunsicherheit

Tabelle 0.2. Zusammenfassung der Messergebnisse - Massenströme.

| Einheit | Y <sub>max</sub> -U <sub>P</sub> *) | Y <sub>max</sub> +U <sub>P</sub> *)        | Grenzwert                                                            | Vertrauens-<br>grenze**)                                                                     | Betriebszustand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------|--------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| g/h     | 0,01                                | 0,02                                       | -                                                                    | 0,02                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| g/h     | 0                                   | 0                                          | 15                                                                   | 0                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| g/h     | 0                                   | 0                                          | -                                                                    | 0                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a/h     | 0.0                                 | 0.0                                        | _                                                                    | 0.0                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9/11    | 0,0                                 | 0,0                                        |                                                                      | 0,0                                                                                          | Dampfmenge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a/h     | 0.2                                 | 0.3                                        | _                                                                    | 0.4                                                                                          | 23 - 25 t/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9/11    | 0,2                                 | 0,0                                        |                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ) g/h   | 0,0                                 | 0,0                                        | -                                                                    | 0,0                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ) ma/h  | 0.0                                 | 0.0                                        |                                                                      | 0.0                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | g/h<br>g/h<br>g/h<br>g/h            | g/h 0,01 g/h 0 g/h 0 g/h 0 g/h 0,0 g/h 0,0 | g/h 0,01 0,02 g/h 0 0 g/h 0 0 g/h 0,00 g/h 0,00 g/h 0,00 g/h 0,0 0,0 | g/h 0,01 0,02 - g/h 0 0 15 g/h 0 0 - g/h 0,00 - g/h 0,0 0,0 -  g/h 0,2 0,3 - 0 g/h 0,0 0,0 - | Einheit         Y <sub>max</sub> -U <sub>P</sub> *)         Y <sub>max</sub> +U <sub>P</sub> *)         Grenzwert grenze**)           g/h         0,01         0,02         -         0,02           g/h         0         0         15         0           g/h         0         0         -         0           g/h         0,0         0,0         -         0,0           g/h         0,2         0,3         -         0,4           )         g/h         0,0         0,0         -         0,0 |

<sup>\*)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

Y<sub>max</sub>: maximaler Messw ert

U<sub>P</sub>: Messunsicherheit

**ELR/MNR** 

### Anmerkung:

Bei den Summenbildungen bleiben Einzelstoffe (Metalle, PCDD/F- und dl-PCB-Kongenere, Benzo(a)pyren), deren Konzentrationen unterhalb der jeweiligen Bestimmungsgrenze liegen, unberücksichtigt (für den Fall, dass alle in der Summe enthaltenen Einzelkomponenten unterhalb der jeweiligen Bestimmungsgrenze liegen, ergibt sich demzufolge für den Summenwert der Zahlenwert "Null").

### Anmerkung: (für Anlagen der 17. BlmSchV)

Gemäß §18 Absatz 3 der 17. BImSchV vom 13.02.2024 sind die periodischen Einzelmessungen nur einmal jährlich durchzuführen, wenn der Maximalwert der periodischen Messungen mit einem Vertrauensniveau von 50 % (nach der Richtlinie VDI 2448 Blatt 2, 07/1997) den jeweiligen Emissionsgrenzwert nicht überschreitet.

<sup>\*\*)</sup> obere Vertrauensgrenze, berechnet auf Grundlage des 50%-Vertrauensniveaus des Maximalwertes f max50

<sup>1)</sup> Fremdanalytik (siehe 1.12)

<sup>2)</sup> teilw eise Fremdanalytik (Benzo(a)pyren) (siehe 1.12)

 $<sup>^{\</sup>star\star}) \ \ \text{obere Vertrauensgrenze, berechnet auf Grundlage des 50\%-Vertrauensniveaus des Maximalwertes } f_{\text{max},50}$ 

<sup>1)</sup> Fremdanalytik (siehe 1.12)

<sup>2)</sup> teilw eise Fremdanalytik (Benzo(a)pyren) (siehe 1.12)

# Inhaltsverzeichnis

| 1    | Formulierung der Messaufgabe                                 | 4  |
|------|--------------------------------------------------------------|----|
| 1.1  | Auftraggeber                                                 | 4  |
| 1.2  | Betreiber                                                    | 4  |
| 1.3  | Standort                                                     | 4  |
| 1.4  | Anlage                                                       | 4  |
| 1.5  | Datum der Messung                                            | 4  |
| 1.6  | Anlass der Messung                                           | 4  |
| 1.7  | Aufgabenstellung                                             | 4  |
| 1.8  | Messkomponenten und Messgrößen                               | 5  |
| 1.9  | Ortsbesichtigung vor Messdurchführung                        | 5  |
| 1.10 | Messplanabstimmung                                           | 6  |
| 1.11 | An den Arbeiten beteiligte Personen                          | 6  |
| 1.12 | Beteiligung weiterer Institute                               | 6  |
| 1.13 | Fachlich Verantwortlicher                                    | 6  |
| 2    | Beschreibung der Anlage und der gehandhabten Stoffe          | 7  |
| 2.1  | Bezeichnung der Anlage                                       | 7  |
| 2.2  | Beschreibung der Anlage                                      | 7  |
| 2.3  | Beschreibung der Emissionsquellen nach Betreiberangaben      | 7  |
| 2.4  | Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe | 8  |
| 2.5  | Betriebszeiten nach Betreiberangaben                         | 8  |
| 2.6  | Einrichtung zur Erfassung und Minderung der Emissionen       | 8  |
| 3    | Beschreibung der Probenahmestelle                            | 10 |
| 3.1  | Messstrecke und Messquerschnitt                              | 10 |
| 3.2  | Lage der Messpunkte im Messquerschnitt                       | 11 |
| 4    | Messverfahren und Messeinrichtungen                          | 12 |
| 4.1  | Abgasrandbedingungen                                         | 12 |
| 4.2  | Automatische Messverfahren                                   | 13 |
| 4.3  | Manuelle Messverfahren für gas- und dampfförmige Emissionen  | 14 |
| 4.4  | Messverfahren für partikelförmige Emissionen                 | 18 |
| 4.5  | Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. Ä.)  | 20 |
| 4.6  | Geruchsemission                                              | 23 |
| 5    | Betriebszustand der Anlage während der Messungen             | 24 |
| 5.1  | Produktionsanlage                                            | 24 |
| 5.2  | Abgasreinigungsanlagen                                       | 24 |
| 6    | Zusammenstellung der Messergebnisse und Diskussion           | 25 |
| 6.1  | Beurteilung der Betriebsbedingungen während der Messungen    | 25 |
| 6.2  | Messergebnisse                                               | 25 |
| 6.3  | Messunsicherheiten                                           | 29 |
| 6.4  | Plausibilitätsprüfung                                        | 30 |
| 7    | Anlagen                                                      | 31 |

ELR/MNR

### 1 Formulierung der Messaufgabe

### 1.1 Auftraggeber

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

### 1.2 Betreiber

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

Ansprechpartner Herr Vogeler

Tel. +49(3677)641310

Betreiber-/Arbeitsstätten-Nr. nicht bekannt

### 1.3 Standort

BHI GmbH Biomasse Heizkraftwerk Ilmenau Gewerbepark "Am Wald" 18 a 98693 Ilmenau

Flur 9/10, Flurstücke 1257/1, 1274/1, 1258/1, 1259, 1303/2, 1400/45, 1400/49 und 1930/2

### 1.4 Anlage

Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung

genehmigungsbedürftig gemäß BlmSchG i. V. mit Nr. 8.1 und 8.2 des Anhangs 1 zur 4. BlmSchV, in der aktuellen Fassung

Anlagen-Nr. 01

### 1.5 Datum der Messung

Datum der Messung 25.-27.09.2024

Datum der letzten Messung 09/2023

Datum der nächsten Messung 2025

### 1.6 Anlass der Messung

wiederkehrende Messung zur Überprüfung der Einhaltung der Emissionsbegrenzungen

### 1.7 Aufgabenstellung

Messung gemäß nachstehendem Genehmigungsbescheid

Genehmigungsbehörde Thüringer Landesverwaltungsamt Weimar Genehmigungsbescheid Az.: 76/01 und 76/01/N vom 26.03.2003

Überwachungsbehörde Landratsamt Ilmkreis

**ELR/MNR** 

Emissionsbegrenzungen gemäß Ziffer 2.2 des o. g. Genehmigungsbescheids bzw. gemäß 17.BImSchV:

| Buch-<br>stabe | Schadstoff                                       | Tagesmittelwert<br>in mg/Nm³ | Halbstundenwert<br>in mg/Nm <sup>3</sup> |
|----------------|--------------------------------------------------|------------------------------|------------------------------------------|
| a)             | Gesamtstaub                                      | 5                            | 20                                       |
| b)             | Kohlenmonoxid                                    | 50                           | 100                                      |
| c)             | Gesamtkohlenstoff                                | 10                           | 20                                       |
| d)             | Chlorwasserstoff                                 | 8                            | 40                                       |
| e)             | Fluorwasserstoff 1)                              | 0,9                          | 4                                        |
| f)             | Schwefeldioxid                                   | 40                           | 200                                      |
| g)             | Stickstoffdioxid                                 | 150                          | 400                                      |
| h)             | Quecksilber <sup>2)</sup>                        | 0,01                         | 0,035                                    |
| i)             | Cd, TI                                           |                              | 0,02                                     |
| j)             | SbSn (17. BlmSchV)                               |                              | 0,3                                      |
| k)             | As, Benzo(a)pyren, Cd, Co, Cr                    |                              | 0,05                                     |
| l)             | Ammoniak                                         | 10                           | 15                                       |
| m)             | Cyanwasserstoff                                  | <b></b>                      | 15 g/h                                   |
| n)             | PCDD/F + dI-PCB<br>(gemäß 17. BImSchV, Anlage 2) | 0,08 ng I-TEq/Nm³            |                                          |
|                | Sauerstoff- Bezugswert                           | 11,0 Vol%                    | 11,0 Vol%                                |

<sup>&</sup>lt;sup>1)</sup> Auf die kontinuierliche Messung kann verzichtet werden, wenn die Grenzwerteinhaltung (< 60 %) sicher nachgewiesen wurde.

Die **hervorgehobenen** Komponenten werden über Einzelmessungen bestimmt. Die Komponenten a), b), c), d), f) und g) werden kontinuierlich seitens des Betreibers überwacht.

Die Angaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K) und den angegebenen Bezugssauerstoffgehalt.

### 1.8 Messkomponenten und Messgrößen

Abgasrandbedingungen Sauerstoff O2, Kohlendioxid CO2, Temperatur, Druck, Feuchte, Volumenstrom gasförmige Emissionen Fluorwasserstoff, Cyanwasserstoff, Distickstoffoxid, Quecksilber partikelförmige Emissionen staub- und gasförmige Schwermetalle nach 17. BImSchV (Cd, Tl, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) PCDD/F + dl-PCB (gemäß 17. BlmSchV, Anlage 2), Besondere hochtoxische Abgasinhaltsstoffe Benzo(a)pyren Geruch 1.9 Ortsbesichtigung vor Messdurchführung durchgeführt am  $\boxtimes$ nicht durchgeführt weil mit den vorherigen Messungen an der Anlage befasst

<sup>&</sup>lt;sup>2)</sup> Auf die kontinuierliche Messung von Quecksilber kann verzichtet werden, wenn die Messergebnisse unter 20 % des Grenzwertes liegen.

# NS-MUC-FS01\ALLEFIRMENIM\PROJ\175\M175121\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

### 1.10 Messplanabstimmung

Die Messplanung wurde mit dem Auftraggeber abgestimmt und dem Landratsamt Ilmenau, der Thüringer Landesanstalt für Umwelt und Geologie und dem Auftraggeber am 02.09.2024 in Form eines Kurzmessplanes übermittelt.

### 1.11 An den Arbeiten beteiligte Personen

Dipl.-Ing. (FH) Frank Ellner-Schuberth Projektleiter B. Eng. Jakob Fischer Messingenieur

### 1.12 Beteiligung weiterer Institute

mas münster analytical solutions gmbh Technologiepark Münster Wilhelm-Schickard-Str. 5 48149 Münster oder

PCDD/F-, dI-PCB- und PAH-Analytik

### 1.13 Fachlich Verantwortlicher

Name Dipl.-Ing. (FH) Stephan Hempfling

Telefon-Nr. +49(89)85602-0

E-Mail-Adresse Stephan.Hempfling@mbbm-ind.com

Anzahl

### 2 Beschreibung der Anlage und der gehandhabten Stoffe

### 2.1 Bezeichnung der Anlage

Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung

genehmigungsbedürftig gemäß BlmSchG i. V. mit Nr. 8.1 und 8.2 des Anhangs 1 zur 4. BlmSchV, in der aktuellen Fassung

### 2.2 Beschreibung der Anlage

Die Firma Biomasseheizkraftwerk Ilmenau GmbH betreibt im Gewerbepark Am Wald 18a in Ilmenau eine Anlage zur Verwertung fester Abfälle mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Verbrennung.

In einem Kessel werden Hackschnitzel aus naturbelassenem Holz und Rinde sowie Altholz der Kategorien A I, A II, und A III als Brennstoffe eingesetzt. Als Brennstoff für die Zünd- und Zusatzfeuerung wird Erdgas verwendet.

Die Rauchgasreinigungsanlage besteht aus einer Harnstoffzugabe in der Nachbrennkammer, einem vorgeschalteten Zyklon, einer Kalk-Additiv-Zugabe und einem 4-Kammer-Gewebefilter.

Das gereinigte Abgas wird über einen 45 m über Grund hohen Kamin in die Atmosphäre emittiert.

### Technische Daten des Dampferzeugers

Anlagenleistung 23,5 t<sub>D</sub>/h bei 47 bar und 450 °C Dampfleistung

Hersteller Fa. Bertsch GmbH – Österreich

Baujahr 2005
Hersteller-Nr. 12.351
zulässiger Betriebsüberdruck 55 bar
Heizfläche 2.255 m²
Wasserinhalt 34.230 I

Kesselbauart Eintrommel-Naturumlaufkessel

Beheizungsart Rostfeuerung

### Technische Daten des Stützbrenners/ Anfahrbrenner

Hersteller Fa. Weishaupt GmbH

Baujahr 2004
Bauart/ Ausführung ZM-NR
Brennstoff Erdgas
Typ G 40/Z-A
Leistung 3.000 kW

# 2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Bezeichnung der Emissionsquelle Kamin
Höhe über Grund 45 m
Austrittsfläche 1,27 m²

UTM-Koordinaten 32 U 637092 / 5618046

Bauausführung freistehender einzügiger Stahlkamin

2

### 2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

Hackschnitzel aus den folgenden Holzkategorien:

- naturbelassenes Holz oder Rinde aus der Land- und Forstwirtschaft
- Altholz der Kategorien A I, A II, und A III
- Erdgas als Brennstoff für die Zündfeuerung

### 2.5 Betriebszeiten nach Betreiberangaben

max. 8.760 h/a, abzüglich Revisionszeiten

tägliche Betriebszeit 24 Stunden wöchentliche Betriebszeit 7 Tage

### 2.6 Einrichtung zur Erfassung und Minderung der Emissionen

### 2.6.1 Einrichtung zur Erfassung der Emissionen

### 2.6.1.1 Art der Emissionserfassung

Das Abgas folgender Anlagenteile wird durch festinstallierte Rohrleitungen über eine Filterentstaubung der Atmosphäre zugeführt:

- Kesselabsaugungen
- Nachverbrennung mit Stützfeuerung
- Harnstoffzugabe (SNCR- Anlage)
- Zyklon
- Kalkhydratzugabe
- Gewebefilter
- Abgasventilator
- Kamin

### 2.6.1.2 Ventilatorkenndaten

Fabrikat Radialventilator

Hersteller Reitz

Typ KXE080-180015-00

Baujahr 2020

Volumenstrom 126.410 m³/h

Motorleistung 315 kW

### 2.6.1.3 Ansaugfläche

entfällt

### 2.6.2 Einrichtung zur Verminderung der Emissionen

# Hersteller: Fa. SCHEUCH – Österreich Baujahr: 2023 Type: Zp-5-2500 links/rechts Einzelzyklone: 2 Schaltung/Bauart: parallel letzte Wartung: 2023 Abreinigung: Schnecke und Zellradschleuse

### **SNCR-Anlage**

Hersteller: Fa. Mehldau & Steinfath

Baujahr: 2004 Type: ohne

Zudosierung: Harnstofflösung, ca. 45 Gew.% (NOxAMID45)

Zugabemenge: 30 – 40 Liter/h bei Volllast

Ort der Zugabe: Nachbrennkammer

Gewebefilter

Hersteller: Fa. SCHEUCH – Österreich

Baujahr: 2023

Bauart: Mehrkammerfilter

Anzahl der Kammern 4
Anzahl der Schläuche je Kammer: 150

Filtermaterial: PTFE-Nadelfilz/PTFE-Stützgewebe

Filterfläche: 1.866 m<sup>2</sup>

Filterflächenbelastung:  $0,94 \text{ m}^3/\text{m}^2 \text{ x min}$  Abreinigung: Druckluftimpulse

Abreinigungsrhythmus: differenzdruckgesteuert

letzter Filterwechsel: Erstbestückung nach Umbau

Das Additivsilo ist mit einem Siloaufsatzfilter zur Verminderung der Emissionen ausgerüstet.

Hersteller: Fa. SCHEUCH – Österreich

Fabrik-Nr. F11114/04
Baujahr: 2004

Anzahl der Schläuche: 36

Filtermaterial: PTFE-Nadelfilz/PTFE-Stützgewebe

Filterfläche: 19 m²

Filterflächenbelastung: 78 m³/m² x h

Abreinigung: Druckluftimpulse

Abreinigungsrhythmus: 5 min.

### 2.6.3 Einrichtung zur Verdünnung des Abgases

Es sind keine Einrichtungen zur Verdünnung der Abgase installiert.

**ELR/MNR** 

# 3 Beschreibung der Probenahmestelle

# 3.1 Messstrecke und Messquerschnitt

| 3.1.1 Lage und Abmessungen                                                                     |                        |                                           |  |  |
|------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|--|--|
| Die Messstelle liegt                                                                           |                        | ☐ im Gebäude                              |  |  |
|                                                                                                | ☐ vor Saugzug          | ⊠ nach Saugzug                            |  |  |
|                                                                                                | ⊠ im Kamin             | im horizontalen Abgaskanal.               |  |  |
| Kanalgeometrie                                                                                 | rund                   |                                           |  |  |
| Kanalabmessungen                                                                               | Ø 1,27 m               |                                           |  |  |
| hydraulischer Durchmesser Dh                                                                   | Ø 1,27 m               |                                           |  |  |
| Länge Ein-/Auslaufstrecke                                                                      | 10 m/ 21 m             |                                           |  |  |
| Empfehlung $\geq 5 \cdot D_h$ Einlauf und $2 \cdot D_h$ Auslauf ( $5 \cdot D_h$ vor Mündu      | ing) 🛛 erfüllt         | nicht erfüllt                             |  |  |
| Bei Ein- und Auslaufstrecken, die wie im vorliege Allgemeinen homogene Strömungsverhältnisse : | -                      | der DIN EN 15259 entsprechen, sind im     |  |  |
| 3.1.2 Arbeitsfläche und Messbühne                                                              |                        |                                           |  |  |
| Die Probenahmestelle liegt                                                                     | 24 m über Bodenn       | iveau.                                    |  |  |
| Zugang                                                                                         | Treppe                 |                                           |  |  |
| Arbeitsbereich/ Messbühne                                                                      | Messbühne ohne E       | Einhausung                                |  |  |
| Traversierfläche                                                                               | Tiefe: ca. 1 m, Bre    | Tiefe: ca. 1 m, Breite: 360° um den Kamin |  |  |
| zusätzliche Arbeitsfläche                                                                      | Ausreichend vorha      | Ausreichend vorhanden auf dem Flachdach   |  |  |
| 3.1.3 Messöffnungen                                                                            |                        |                                           |  |  |
| Anzahl                                                                                         | 3                      |                                           |  |  |
| Anordnung                                                                                      | um 90° versetzt        |                                           |  |  |
| Größe                                                                                          | 3"                     |                                           |  |  |
| 3.1.4 Strömungsbedingungen im Mes                                                              | squerschnitt           |                                           |  |  |
| Winkel des Gasstroms zu Mittelachse des Abgaskanals < 15°                                      |                        | nicht erfüllt                             |  |  |
| keine lokale negative Strömung                                                                 | ⊠ erfüllt              | ☐ nicht erfüllt                           |  |  |
| Verhältnis von höchster zu niedrigster Geschwin im Messquerschnitt < 3 : 1                     | digkeit 🛛 erfüllt      | nicht erfüllt                             |  |  |
| Mindestgeschwindigkeit (in Abhängigkeit vom verwendeten Messverfahren)                         | ⊠ erfüllt              | nicht erfüllt                             |  |  |
| 3.1.5 Zusammenfassende Beurteilung                                                             | g der Messbedingungen  |                                           |  |  |
| Messbedingungen nach DIN EN 15259                                                              | ⊠ erfüllt              | ☐ nicht erfüllt                           |  |  |
| ergriffene Maßnahmen                                                                           | keine erforderlich     |                                           |  |  |
| zu erwartende Auswirkungen auf das Messergel                                                   | onis keine             |                                           |  |  |
| Empfehlungen und Hinweise zur Verbesserung                                                     | der keine erforderlich |                                           |  |  |

Messbedingungen

# \\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\175\\M175121\\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

# 3.2 Lage der Messpunkte im Messquerschnitt

# 3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

|                                                                                                                                                                                                                                                                                                                                      | wählte Anzahl Messpunkte  erteilung der Messpunkte im Messquerschnitt  Die Festlegung der Messpunkte im Kanalquerschnitt zur Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6 | Mess   | querschnitt                                 | 1,27 m <sup>2</sup>                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------|-----------------------------------------------------------------------|
| Verteilung der Messpunkte im Messquerschnitt  Die Festlegung der Messpunkte im Kanalquerschnitt zu Durchführung einer Netzmessung erfolgt nach den Vor gaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                             | Die Festlegung der Messpunkte im Kanalquerschnitt zur Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung    durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                      | gewä   | hlte Anzahl Messachsen                      | 2                                                                     |
| Durchführung einer Netzmessung erfolgt nach den Vor gaben der DIN EN 15259. (siehe Strömungsprofil im Kapitel 7, Anlage 1)  3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                 | Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259. (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                               | gewä   | hlte Anzahl Messpunkte                      | 4                                                                     |
| 3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                             | 2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                          | Verte  | ilung der Messpunkte im Messquerschnitt     | Durchführung einer Netzmessung erfolgt nach den Vor-                  |
| ☐ durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                                                      | durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                                                   |        |                                             | (siehe Strömungsprofil im Kapitel 7, Anlage 1)                        |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 | 3.2.2  | Homogenitätsprüfung                         |                                                                       |
| ☐ nicht durchgeführt, weil                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                 | □du    | rchgeführt, siehe Ergebnisse in Abschnitt 6 |                                                                       |
|                                                                                                                                                                                                                                                                                                                                      | nicht durchgeführt, weil                                                                                                                                                                                                                                                                                                        | ⊠ nio  | cht durchgeführt, weil                      |                                                                       |
| Fläche Messquerschnitt < 0,1 m²                                                                                                                                                                                                                                                                                                      | Fläche Messquerschnitt - 0.1 m²                                                                                                                                                                                                                                                                                                 |        | Fläche Messquerschnitt < 0,1 m²             |                                                                       |
| ☐ Netzmessungen                                                                                                                                                                                                                                                                                                                      | Tractile Messquerscriffitt < 0,1 m                                                                                                                                                                                                                                                                                              |        | Netzmessungen                               |                                                                       |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |        | liegt vor                                   |                                                                       |
| ☐ liegt vor                                                                                                                                                                                                                                                                                                                          | Netzmessungen                                                                                                                                                                                                                                                                                                                   | Datas  | and a liberary was 1881 as a 1881 as a      | 04.00.0000                                                            |
|                                                                                                                                                                                                                                                                                                                                      | Netzmessungen liegt vor                                                                                                                                                                                                                                                                                                         | Datur  | n der Homogenitatsprutung                   | 21.09.2009                                                            |
| <ul><li>□ liegt vor</li><li>□ Datum der Homogenitätsprüfung</li><li>□ 21.09.2009</li></ul>                                                                                                                                                                                                                                           | Netzmessungen liegt vor                                                                                                                                                                                                                                                                                                         | Bericl | hts-Nr.                                     | M80773/3                                                              |
| Datum der Homogenitätsprüfung 21.09.2009                                                                                                                                                                                                                                                                                             | Netzmessungen liegt vor atum der Homogenitätsprüfung 21.09.2009                                                                                                                                                                                                                                                                 | Prüfir | estitut                                     | Müller-BBM GmbH                                                       |
| Datum der Homogenitätsprüfung 21.09.2009 Berichts-Nr. M80773/3                                                                                                                                                                                                                                                                       | Netzmessungen liegt vor stum der Homogenitätsprüfung 21.09.2009 erichts-Nr. M80773/3                                                                                                                                                                                                                                            | _      |                                             | ⊠ Messung an einem beliebigen Punkt                                   |
| Datum der Homogenitätsprüfung  21.09.2009  Berichts-Nr.  M80773/3  Prüfinstitut  Müller-BBM GmbH  Ergebnis der Homogenitätsprüfung                                                                                                                                                                                                   | Netzmessungen liegt vor  atum der Homogenitätsprüfung 21.09.2009 erichts-Nr. M80773/3 üfinstitut Müller-BBM GmbH gebnis der Homogenitätsprüfung                                                                                                                                                                                 |        |                                             | ☐ Messung an einem repräsentativen Punkt:<br>Messachse x, Messpunkt x |
| Datum der Homogenitätsprüfung  21.09.2009  Berichts-Nr.  M80773/3  Prüfinstitut  Müller-BBM GmbH  Ergebnis der Homogenitätsprüfung (für gasförmige Verbindungen)   Messung an einem beliebigen Punkt  ☐ Messung an einem repräsentativen Punkt:                                                                                      | Netzmessungen liegt vor  atum der Homogenitätsprüfung 21.09.2009 erichts-Nr. M80773/3 üfinstitut Müller-BBM GmbH gebnis der Homogenitätsprüfung ir gasförmige Verbindungen)                                                                                                                                                     |        |                                             | Netzmessung                                                           |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 | Datur  | n der Homogenitätsprüfung                   |                                                                       |
| Ex mont duringerunt, wen                                                                                                                                                                                                                                                                                                             | nicht durchaeführt weil                                                                                                                                                                                                                                                                                                         |        |                                             |                                                                       |
| ☐ nicht durchgeführt, weil                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                 | ☐ du   | rchgeführt, siehe Ergebnisse in Abschnitt 6 |                                                                       |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 | □du    |                                             |                                                                       |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 | 3.2.2  | Homogenitätsprüfung                         |                                                                       |
| ☐ durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                                                      | durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                                                   |        |                                             | (siehe Strömungsprofil im Kapitel 7, Anlage 1)                        |
| 3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                             | 2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                                                                                                                                          | Verte  | ilung der Messpunkte im Messquerschnitt     | Durchführung einer Netzmessung erfolgt nach den Vor-                  |
| Durchführung einer Netzmessung erfolgt nach den Vor gaben der DIN EN 15259. (siehe Strömungsprofil im Kapitel 7, Anlage 1)  3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                                 | Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259. (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                                                                               | gewä   | hite Anzahl Messpunkte                      | 4                                                                     |
| Verteilung der Messpunkte im Messquerschnitt  Die Festlegung der Messpunkte im Kanalquerschnitt zu Durchführung einer Netzmessung erfolgt nach den Vor gaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6                             | Die Festlegung der Messpunkte im Kanalquerschnitt zur Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung    durchgeführt, siehe Ergebnisse in Abschnitt 6                                                                      | gewä   | hlte Anzahl Messachsen                      | 2                                                                     |
| gewählte Anzahl Messpunkte  Verteilung der Messpunkte im Messquerschnitt  Die Festlegung der Messpunkte im Kanalquerschnitt zu Durchführung einer Netzmessung erfolgt nach den Vor gaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  3.2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6 | wählte Anzahl Messpunkte  erteilung der Messpunkte im Messquerschnitt  Die Festlegung der Messpunkte im Kanalquerschnitt zur Durchführung einer Netzmessung erfolgt nach den Vorgaben der DIN EN 15259.  (siehe Strömungsprofil im Kapitel 7, Anlage 1)  2.2 Homogenitätsprüfung  durchgeführt, siehe Ergebnisse in Abschnitt 6 | Mess   | querschnitt                                 | 1,27 m <sup>2</sup>                                                   |

# 3.2.3 Komponentenspezifische Darstellung

| Messkomponente                    | Anzahl der<br>Mesachsen | Anzahl der<br>Messpunkte je<br>Messachse | Homogenitäts-<br>prüfung<br>durchgeführt | beliebiger<br>Messpunkt | repräsentativer<br>Messpunkt | Netzmessung |
|-----------------------------------|-------------------------|------------------------------------------|------------------------------------------|-------------------------|------------------------------|-------------|
| O <sub>2</sub> , N <sub>2</sub> O | 1                       | 1                                        |                                          | $\boxtimes$             |                              |             |
| HF, HCN, Hg                       | 1                       | 1                                        |                                          | $\boxtimes$             |                              |             |
| Schwermetalle                     | 2                       | 4                                        |                                          |                         |                              | $\boxtimes$ |
| PCDD/F, dl-PCB,<br>B(a)p          | 2                       | 4                                        |                                          |                         |                              |             |

### Messverfahren und Messeinrichtungen

### Abgasrandbedingungen 4.1

### 4.1.1 Strömungsgeschwindigkeit

Messverfahren Prandtl'sches Staurohr in Verbindung mit

elektronischem Mikromanometer

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 3, Prüfmittelkatalog, Messkomponente pdyn

Erfassung durch Netzmessungen sowie kontinuierlich in einem

repräsentativen Messpunkt mit elektronischer

Dokumentation

### 4.1.2 Statischer Druck im Abgaskamin

siehe Abschnitt 4.1.1

### 4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren Digitalbarometer

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 3, Prüfmittelkatalog, Messkomponente patm

### 4.1.4 **Abgastemperatur**

Messverfahren Thermospannung, NiCr-Ni-Thermoelement

Prüfmittel (Hersteller/Typ/Nummer) siehe Anlage 3, Prüfmittelkatalog, Messkomponente T Erfassung kontinuierlich in einem repräsentativen Messpunkt mit

elektronischer Dokumentation

### 4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren gravimetrische Differenzmethode

DIN EN 14790 (2017-05) Emissionen aus stationären Quellen – Bestimmung von

Wasserdampf in Kanälen – Standardreferenzverfahren

Müller-BBM-Prüfanweisungen 16-1Z04

Probenahme Partikelabscheidung/beheizte Probenahme/Kondensation

mit gekühltem destilliertem Wasser und Adsorption an

Silikagel/Gasprobennehmer

Probenahmesystem siehe Anlage 3, Prüfmittelkatalog, Messkomponente H<sub>2</sub>O

siehe Anlage 3, Prüfmittelkatalog, Messkomponente H<sub>2</sub>O Waage

### **Abgasdichte** 4.1.6

berechnet unter Berücksichtigung der Abgasbestandteile Sauerstoff (O<sub>2</sub>), Kohlendioxid (CO<sub>2</sub>)

an

Abgasfeuchte (Wasserdampfanteil im Abgas)

sowie der Abgastemperatur und der Druckverhältnisse im

Kanal

Luftstickstoff (N<sub>2</sub>)

### 4.1.7 Abgasverdünnung

entfällt

### 4.2 Automatische Messverfahren

### 4.2.1 Messobjekte

Sauerstoff (O<sub>2</sub>)

Distickstoffmonoxid (N2O)

### 4.2.2 Messverfahren

O<sub>2</sub> magnetische Suszeptibilität, DIN EN 14789 (2017-05)

N<sub>2</sub>O NDIR-Spektrometrie, DIN EN 21258 (2010-10)

Müller-BBM-Prüfanweisungen 16-1A09 (N<sub>2</sub>O); 16-1A10 (O<sub>2</sub>)

### 4.2.3 Analysatoren

O<sub>2</sub> (Hersteller/Typ/Nummer/...) siehe Anlage 3, Prüfmittelkatalog, Messkomponente O<sub>2</sub>
N<sub>2</sub>O (Hersteller/Typ/Nummer/...) siehe Anlage 3, Prüfmittelkatalog, Messkomponente N<sub>2</sub>O

### 4.2.4 Eingestellter Messbereich

O<sub>2</sub> 0... 25 Vol.-%

 $N_2O$  0... 600 ppm / 0... 1178 mg/m<sup>3</sup>

### 4.2.5 Messplatzaufbau

Entnahmesonde Edelstahl, beheizt auf Abgastemperatur, Länge 0,5 m

Partikelfilter Sintermetallfilter, innenliegend, beheizt auf Abgastemperatur

Probegasleitung vor Gasaufbereitung Länge 20 m, PTFE-Leitung, beheizt auf 180 °C

Probegasleitung nach Gasaufbereitung Länge ca. 1 m, PTFE-Leitung, unbeheizt

Werkstoff der gasführenden Teile Edelstahl, PTFE, Glas

Messgasaufbereitung Messgaskühler

Bauart M+C Products) mit Feinstaubfilter und

Feuchteüberwachung

Temperatur geregelt auf 4 °C

Trockenmittel nicht vorhanden

Messgasdurchfluss 0,12 m³/h

### 4.2.6 Überprüfung der Gerätekennlinie

### Prüfgas Distickstoffoxid N₂O

Hersteller Air Liquide
Flaschennummer D49UTKG

Konzentration 147,8 ppm / 290,1 mg/m<sup>3</sup>

 $\begin{array}{ll} \text{Rest} & & N_2 \\ \\ \text{Analysentoleranz} & & \pm 2 \ \% \\ \end{array}$ 

zertifiziert Hersteller
Datum 18.10.2022
Stabilitätsgarantie 36 Monate

**ELR/MNR** 

Garantiezeit eingehalten ja

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\175\\M175121\\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

Nullgas Stickstoff

Prüfgas O<sub>2</sub> Umgebungsluft (20,95 Vol.-%)

Aufgabe durch das gesamte Probenahmesystem ja

### 4.2.7 90 % Einstellzeit des gesamten Messaufbaus

< 60 s (ermittelt durch druckfreie Aufgabe von Prüfgas an der Entnahmesonde)

### 4.2.8 Erfassung/Registrierung der Messwerte

Registrierung kontinuierlich mit einem Datenerfassungs- und Auswerte-

systen

Hersteller/Typ Kirsten Controlsystems GmbH, PC-gekoppelt mit 32-bit AD-

Wandler

Software Trendows

### 4.2.9 Maßnahmen zur Qualitätssicherung

Regelmäßige Durchführung von Funktionskontrollen nach DIN EN 14181, Überprüfung der eingesetzten Prüfgase durch Vergleich mit DKD-zertifizierten Gasen, Qualitätssicherung nach DIN EN 14789 (Unsicherheitsbilanz), regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung druckfreie Prüfgasaufgabe an der Lanzenspitze

Messunsicherheit siehe 6.3

### 4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

### 4.3.1 Gasförmige anorganische Fluorverbindungen (angegeben als HF)

### 4.3.1.1 Messverfahren

VDI 2470, Blatt 1 (1975-10) Messung gasförmiger Emissionen; Messen gasförmiger

Fluorverbindungen; Absorptions-Verfahren

DIN CEN/TS 17340 (2021-01) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration fluorierter Verbindungen, angegeben

als HF - Standardreferenzverfahren

Müller-BBM-Prüfanweisungen 16-1A02; 16-2A02

### 4.3.1.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung Partikelabscheidung/beheizte Probenahme/zweistufige

Absorption/Gasprobennehmer

Entnahmesonde Titan, beheizt auf 180 °C, Länge 1,5 m, mit beheiztem

Verteiler für weitere Messparameter

Partikelfilter Planfilter im Filtergehäuse aus Titan,

innenliegend, beheizt auf Abgastemperatur,

Material: Quarzfaser

Probegasleitung entfällt

**ELR/MNR** 

\\S-MUC-FS01\ALLEFIRMEN\\M\PROJ\175\\M175121\\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

Werkstoff der gasführenden Teile Titan, Quarz, Glas

Ab-/Adsorptionseinrichtung zwei Muenke-Waschflaschen in Reihe, dritte Waschflasche

als Tropfenfänger

Sorptionsmittel 0,1 n Natronlauge

Sorptionsmittelmenge 30 ml je Waschflasche

Probenahmesystem siehe Anlage 3, Prüfmittelkatalog, Messkomponente HF

eingestellter Durchfluss ca. 0,12 m³/h

Abstand Sondenöffnung/Abscheideelement ca. 1,8 m

Probentransfer ungekühlt in 50-ml-PE-Gefäßen

Standzeit der Proben max. 14 Tage (Analyse am 09.10.2024)

Beteiligung eines Fremdlabors keine

4.3.1.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des Fluoridgehaltes mittels ionensensitiver

Elektrode

Aufarbeitung des Probenmaterials Einstellung pH 5-6 mittels Salzsäure, Zugabe von

Citratpufferlösung (pH 5,8)

Analysengeräte (Hersteller/Typ) Fluorid-Elektrode Mettler Toledo perfectION

pH-Elektrode Mettler Toledo InLab Micro Pro-ISM

Standards Natriumfluorid-Lösung, Standardkalibrierverfahren

4.3.1.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit) Einige Schwermetalle wie Cd, Zn, Ag, Ni, Cu, Fe und Hg

komplexieren das Fluorid-Ion und können zu Minderbe-

funden führen.

absolute Bestimmungsgrenze 0,003 mg/Probe

relative Bestimmungsgrenze 0,06 mg/m³ bei 0,05 Nm³ Probegasvolumen

Analysenunsicherheit 2 % vom Messwert

4.3.1.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

# NS-MUC-FS01\ALLEFIRMEN\M\PROJ\175\M175121\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

### 4.3.2 Cyanwasserstoff (angegeben als HCN)

### 4.3.2.1 Messverfahren

IFA 6725 (2012-11) Absorptionsverfahren, Bestimmung des Cyanidgehaltes

mittels ionensensitiver Elektrode

Müller-BBM-Prüfanweisungen 16-1A13; 16-2A13

4.3.2.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung Siehe 4.3.1.2

Standzeit der Proben max. 21 Tage (Analyse am 16.10.2024)

Beteiligung eines Fremdlabors keine

4.3.2.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des Cyanidgehaltes mittels ionensensitiver

Elektrode

Aufarbeitung des Probenmaterials nicht erforderlich, Analytik direkt aus der Probe

Analysengeräte (Hersteller/Typ) Cyanid-Elektrode WTW CN 500/

Referenzelektrode Methrom 6.0750.100

Standards Kaliumzinkcyanid-Lösung, Standardkalibrierverfahren

4.3.2.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit) Sulfide (müssen vor der Analyse ausgefällt werden)

absolute Bestimmungsgrenze 0,003 mg/Probe

relative Bestimmungsgrenze 0,05 mg/m³ bei 0,06 Nm³ Probegasvolumen

Analysenunsicherheit 5 % vom Messwert

4.3.2.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

### 4.3.3 Quecksilber

### 4.3.3.1 Messverfahren

DIN EN 13211 (2001-06) DIN EN 13211 (2005-06)

Berichtigung zu DIN EN 13211:2001-06

DIN EN 1483 (1997-08) DIN EN ISO 12846 (2012-08)

Müller-BBM-Prüfanweisungen

4.3.3.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung

Durchführung der Probenahme

Sorptionsmittel

Sorptionsmittelmenge

Probenahmesystem

eingestellter Durchfluss

Abstand Sondenöffnung/Abscheideelement

Probentransfer

Standzeit der Proben

Beteiligung eines Fremdlabors

4.3.3.3 Analytische Bestimmung

Beschreibung des Analysenverfahrens

Aufarbeitung der Filter

Aufarbeitung der Absorptionslösungen

Analysengeräte (Typ/Hersteller)

Standards (Hg<sup>2+</sup>)

4.3.3.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeit)

**ELR/MNR** 

absolute Bestimmungsgrenze

relative Bestimmungsgrenze

Analysenunsicherheit

Emissionen aus stationären Quellen – Manuelles Verfahren zur Bestimmung der Gesamtquecksilber-Konzentration

Referenzverfahren AnalytikUV-Fotometrie

16-1D04; 16-2D04

Siehe 4.3.1.2

nicht isokinetisch, da Hg partikelförmig < 1 μg/m³ (Nachweis

siehe Anhang)

schwefelsaure KMnO<sub>4</sub>-Lösung

30 ml je Waschflasche

siehe Anlage 3, Prüfmittelkatalog, Messkomponente Hg

ca. 0,12 m<sup>3</sup>/h

ca. 1,8 m

Planfilter in Rundbehältern aus PE Absorptionslösungen

ungekühlt in 250-ml-Duranglas-Flaschen

Lösungen: max. 14 Tage (Analyse am 09.10.2024)

Fillter: max. 16 Tage (Analyse am 11.10.2024)

keine

Bestimmung des Hg-Gehaltes mittels UV-Fotometrie mit

Mess- und Referenzstrahl zur Lampenregelung

Mikrowellendruckaufschluss mit HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> und Flusssäure

nach Entfärbung mit Hydroxylammoniumchlorid und Reduktion durch Zugabe von Zinn(II)-chloridlösung direkt zur

Analyse

Quecksilber-Analysator Typ RA-4300, Nippon Instruments

Cooperation

Quecksilberchlorid-Lösung, Standardkalibrierverfahren

keine bekannt

0,01 µg/Probe

 $0,2~\mu g/m^3$  bei  $0,05~Nm^3$  (Absorptionslösung)

0,025 µg/m³ bei 1 Nm³ (Planfilter)

4 % vom Messwert

# NS-MUC-FS01/ALLEFIRMENIM/PROJ/175/M175121/M175121\_05\_BER\_1D.DOCX:12. 12. 2024

### 4.3.3.5 Maßnahmen zur Qualitätssicherung

Doppelbestimmungen, Blindwertbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

### 4.4 Messverfahren für partikelförmige Emissionen

# 4.4.1 Staubinhaltstoffe und an Staub adsorbierte chemische Verbindungen (Metalle, Halbmetalle und ihre Verbindungen) einschließlich filtergängiger Anteile

### 4.4.1.1 Messverfahren

DIN EN 14385 (2004-05) Emissionen aus stationären Quellen – Bestimmung der

Gesamtemission von As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl

und V

VDI 2268, Blatt 1 – 4 Beschreibung des Aufschlussverfahrens

Müller-BBM-Prüfanweisungen 16-1D03; 16-2D03

Durchführung der Probenahme isokinetische Entnahme eines staubbeladenen Teilgas-

volumens aus dem Hauptvolumenstrom und Abscheidung des enthaltenen Staubes und filtergängiger Anteile durch

Rückhaltesysteme

# 4.4.1.2 Messplatzaufbau

### Probenahme nach dem Hauptstromverfahren

Aufbau der Probenahmeeinrichtung Absaugdüse, Partikelfilter, beheizte Lanze, 2-stufige

Absorption, Kondensatgefäß mit Trockenturm, Pumpe mit

Gasuhr und Temperaturfühler

Entnahmesonde Titan, beheizt auf 180 °C, Länge 1,5 m

### Rückhaltesystem für partikelförmige Stoffe

Partikelfilter Planfilter im Filtergehäuse aus Titan, innenliegend,

beheizt auf Abgastemperatur,

parallel zur Strömungsrichtung positioniert

Abscheidemedium (Typ/Durchmesser/Hersteller) Quarzfaser-Planfilter / Typ MK 360

Blattdurchmesser 45 mm Munktell Filter AB. Schweden

ohne organische Bindemittel, hohe Schwermetallreinheit

# WS-MUC-FS01/ALLEFIRMEN/M/PROJ/175/M175121/M175121\_05\_BER\_1D.DOCX:12. 12. 2024

### Rückhaltesystem für filtergängige Stoffe

Absorptionseinrichtung zwei parallele Waschflaschenstraßen mit je 2 Impinger-

Waschflaschen und einem Tropfenabscheider in Reihe

Sorptionsmittel verdünnte HNO<sub>3</sub>-Lösung mit H<sub>2</sub>O<sub>2</sub>-Zusatz

Sorptionsmittelmenge 40 ml je Impingerwaschflasche

Abstand Sondenöffnung/Abscheideelement ca. 1,8 m

Spüllösung 5%ige HNO<sub>3</sub> (zur Rückgewinnung von Ablagerungen vor

dem Partikelfilter und von filtergängigen Anteilen zwischen

Partikelfilter und erster Absorptionsstufe)

Probentransfer Planfilter in Rundbehältern aus PE oder Polystyrol; Sonden-

spüllösung und Absorptionslösungen ungekühlt in PE-

Gefäßen

Probenahmesystem siehe Anlage 3, Prüfmittelkatalog, Messkomponente SIS

eingestellter Durchfluss gemäß Isokinetik

Standzeit der Proben Lösungen: max. 13 Tage (Analyse am 08.10.2024)

Filter: max. 33 Tage (Analyse am 28.10.2024)

Beteiligung eines Fremdlabors keine

# 4.4.1.3 Aufbereitung und Auswertung der Messfilter und der Absorptionslösungen

Messfilter (Aufarbeitung des Probenmaterials) Mikrowellendruckaufschluss mit HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> und Flusssäure

Absorptionslösung getrennte Vermessung der Absorptionslösungen (ohne

weitere Probenaufbereitung) und der Filteraufschlüsse

Beschreibung des Analysenverfahrens Bestimmung von Schwermetallen mittels ICP und MS-

Detektion

Analysengeräte (Hersteller/Typ) ICP-MS (Thermo/ ICAP RQ) (PMV11478)

Analysebedingungen Hot Plasma (ca. 8.000 K)

Standard 6-Punkt-Kalibrierung der Analyten mit geeignetem, massen-

abhängigem internen Standard (Rhodium, Scandium,

Ruthenium, Germanium, Rhenium)

### 4.4.1.4 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeiten)

Da die Detektion der Elemente durch deren charakteris-

tische Massen erfolgt, können Querempfindlichkeiten weit-

gehend ausgeschlossen werden.

absolute Bestimmungsgrenze Cd/Tl: 0,0005 mg/l

weitere Elemente 0,005 mg/l

relative Bestimmungsgrenze Cd/TI: 0,025 µg/m<sup>3</sup>

**ELR/MNR** 

weitere Elemente: 0,25 µg/m³

bei 50 ml Aufschlusslösung und 1 m³ Probegasvolumen

bzw.

Cd/TI: 0,1 µg/m<sup>3</sup>

weitere Elemente: 1,0 µg/m³

bei 100 ml Absorptionslösung und 1 m³ Probegasvolumen

Analysenunsicherheit 4 % (bestimmt aus Kontrollstandards und Doppelbe-

stimmungen)

### 4.4.1.5 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen

Doppelbestimmungen, regelmäßige Teilnahme an Ringversuchen

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

### 4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. Ä.)

# 4.5.1 Polychlorierte Dibenzodioxine und -furane (PCDD/PCDF) und dioxinähnliche polychlorierte Biphenyle (dI-PCB)

### 4.5.1.1 Messverfahren

DIN EN 1948-1 (2006-06) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 1: Probenahme von PCDD/PCDF

DIN EN 1948-4 (2014-03) Emissionen aus stationären Quellen - Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 4: Probenahme und Analyse dioxin-

ähnlicher PCB

Müller-BBM-Prüfanweisungen 16-1M01; Variante A

Durchführung der Probenahme Probenahme mit gekühltem Absaugrohr; isokinetische Ab-

saugung eines Teilstromes; Abkühlung des Abgases und Kondensation der Abgasfeuchte; Abscheidung von Aerosolen und Partikeln auf einem Planfilter und Adsorption or-

ganischer Verbindungen an XAD

### 4.5.1.2 Messplatzaufbau

Aufbau der Probenahmeeinrichtung wasserkühlbare Sonde; Kondensatgefäß; XAD-Kartusche;

Pumpe; Massendurchflussmesser mit Temperaturfühler)

Entnahmesonde wassergekühlte Titansonde mit auswechselbarem Quarz-

glasrohr, Länge 1,5 m

Partikelfilter Quarzfaserplanfilter vor der letzten Adsorptionsstufe

Absorptionseinrichtung Kondensatgefäß mit Tauchrohr (2 Liter) und

nachgeschalteter Kartusche mit Feststoffadsorbens

Sorptionsmittel und -menge mindestens 30 g gereinigtes XAD-2, dotiert mit <sup>13</sup>C<sub>12</sub>-

 $markier tem\ PCDD/F-\ und\ PCB-Probenahmest and ard$ 

gemäß EN 1948-1 und -4

Probenahmesystem siehe Anlage 3, Prüfmittelkatalog, Messkomponente

PCDD/F

eingestellter Durchfluss ca. 1,3 m³/h (gemäß Isokinetik)

Abstand zwischen Ansaugöffnung der Entnahmesonde

und dem Sorptionsmittel

ca. 1,7 m

### 4.5.1.3 Probenahme und Nachbehandlung

Nachbehandlung Auskochen bzw. Spülen der Probenahmeapparatur mit

destilliertem H<sub>2</sub>O, Toluol und Aceton

\\S-MUC-FS01\\ALLEFIRMEN\\M\PROJ\\175\\M175121\\M175121\_05\_BER\_1D.DOCX:12. 12. 2024

Probentransfer lichtgeschützt, Kondensat und Spüllösung in Braunglas-

flaschen

Zeitraum zwischen Probenahme und Probenaufbereitung max. 12 Tage

Zeitraum der Analyse 07.10.2024 – 21.10.2024

Beteiligung eines Fremdlabors mas | münster analytical solutions gmbh, 48149 Münster

4.5.1.4 Analytische Bestimmung

Richtlinie DIN EN 1948-2/-3/-4 (06 – 2006/06 – 2006/03-2014)

Beschreibung des Analysenverfahrens Bestimmung der PCDD-/PCDF- und dl-PCB-Gehalte mittels

hochauflösender HRGC/HRMS

Aufarbeitung des Probenmaterials Extraktion der festen Phasen (XAD-2 nach Trocknung,

Quarzwatte und Planfilter nach HCI-Behandlung und Trocknung) mit Toluol/Aceton; nach Zugabe von <sup>13</sup>C<sub>12</sub>-markierten PCDD-/PCDF- und PCB-Extraktionsstandards, Ausschütteln der flüssigen Phase mit Toluol; Trocknen und Einengen der vereinigten Toluollösungen; säulenchromatographische Reinigung unter Trennung von PCDD/F und PCB; Zugabe von <sup>13</sup>C<sub>12</sub>-markierten PCDD/F und PCB Wiederfindungsstandards zu den Messlösungen und

Einengen auf geeignete Endvolumina

Auswertung Getrennte Analyse der PCDD/F und PCB; jeweils Injektion

am GC, Analyse mittels HRMS, Auswertung nach

Retentionszeiten und Isotopenverhältnis-Vergleich, Angabe der PCDD/F und dI-PCB als Konzentrationswerte und daraus berechnete Toxische Äquivalente (WHO-TEQ 2005),

berechnet gemäß EN 1948 und 17. BImSchV

Analysengeräte (Hersteller/Typ) Kaltaufgabesystem (Thermo Scientific PTV)

Gaschromatograph (Thermo Scientific Trace GC Ultra)
Massenspektrometer (Thermo Scientific DFS oder MAT 95

XP)

Trennsäulen 60 m DB-5 MS/ggf. 60 m RTX 2330

Standards <sup>13</sup>C<sub>12</sub>-Standards gemäß EN1948

4.5.1.5 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeiten) wird durch Probenaufbereitung minimiert

Bestimmungsgrenze bei 10 m³ Probenahmevolumen 0,0001 ng/m³ für 2,3,7,8-TetraCDD und 0,0025 ng/m³ für das

PCB 126

bei den vorliegenden Probenahmerandbedingungen und der

verwendeten Analytik

relative erweiterte Messunsicherheit Die Messunsicherheiten für die o. g. analytischen Verfahren

wurden nach DIN ISO 11352\_2013-03 abgeleitet. Sie stellen jeweils die erweiterte Unsicherheit dar und wurden mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

PCDD/F (I-TEQ): 23,9 %
PCDD/F (WHO2005-TEQ): 23,5 %
PCB (WHO2005-TEQ): 28,6 %
PCDD/F-PCB (WHO2005-TEQ): 37,0 %

### 4.5.1.6 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen und Bestimmung von Wiederfindungsraten durch Standardzugabe

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Akkreditierung des Labors, regelmäßige Teilnahme an Ringversuchen für die o. g. Parameter

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Nachfolgend werden die Wiederfindungsraten (nach DIN EN 1948) der internen PCDD/F- und PCB-Standards aufgeführt, mit welchen die XAD-Adsorptionsstufe gespikt wurde. Bei korrekter Probenahme müssen die Wiederfindungsraten größer 50 % liegen, andernfalls sind die Proben zu verwerfen.

### PCDD/F-Wiederfindungsraten

Messunsicherheit

| Messung (Datum/Uhrzeit)<br>Standard                | 25.09.2024<br>09:52 – 16:40 | 26.09.2024<br>11:28 – 16:03 | 27.09.2024<br>08:23 – 12:57 | Blindwert |
|----------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------|
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 91 %                        | 95 %                        | 98 %                        | 86 %      |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 102 %                       | 96 %                        | 94 %                        | 96 %      |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 109 %                       | 97 %                        | 100 %                       | 98 %      |

### PCB-Wiederfindungsraten

| Messung (Datum/Uhrzeit)<br>Standard    | 25.09.2024<br>09:52 – 16:40 | 26.09.2024<br>11:28 – 16:03 | 27.09.2024<br>08:23 – 12:57 | Blindwert |
|----------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------|
| <sup>13</sup> C <sub>12</sub> -PCB 60  | 91 %                        | 91 %                        | 93 %                        | 90 %      |
| <sup>13</sup> C <sub>12</sub> -PCB 127 | 109 %                       | 100 %                       | 100 %                       | 98 %      |
| <sup>13</sup> C <sub>12</sub> -PCB 159 | 87 %                        | 91 %                        | 86 %                        | 85 %      |

### 4.5.2 Benzo(a)pyren

### 4.5.2.1 Messverfahren

DIN EN 1948-1 (2006-06) Emissionen aus stationären Quellen – Bestimmung der

Massenkonzentration von PCDD/PCDF und dioxinähnlichen PCB - Teil 1: Probenahme von PCDD/PCDF

VDI 3874 (2006-12) Messen von Emissionen - Messen von polyzyklischen

aromatischen Kohlenwasserstoffen (PAH) - GC/MS-

Verfahren

Bestimmung der Massenkonzentration von PAK sowie

Dibenzofuran und Dibenzodioxin in Emissionsproben

16-2101

MAS\_PA016 (2016-09)

Müller-BBM-Prüfanweisungen

### 4.5.2.2 Messplatzaufbau

siehe Abschnitt 4.5.1.2

### 4.5.2.3 Probenahme und Nachbehandlung

Nachbehandlung Auskochen bzw. Spülen der Probenahmeapparatur mit

destilliertem H2O, Toluol und Aceton

Probentransfer lichtgeschützt, Kondensat und Spüllösung in Braunglas-

flaschen

Zeitraum zwischen Probenahme und Probenaufbereitung max. 12 Tage

Zeitraum der Analyse 07.10.2024 – 21.10.2024

Beteiligung eines Fremdlabors mas | münster analytical solutions gmbh, 48149 Münster

(Probenaufbereitung, Extraktion und Analytik)

4.5.2.4 Analytische Bestimmung

Beschreibung des Analysenverfahrens Bestimmung des PAK-Gehaltes mittels niedrigauflösender

GC/LRMS

Aufarbeitung des Probenmaterials Ein Teil des Toluol-Extraktes (i. d. R. 10 %) der Probe wird

nach Zugabe von internen deuterierten Standards an Kieselgel gereinigt. Zugabe eines weiteren deuterierten PAK als Wiederfindungsstandard und Einengen auf das ge-

eignete Endvolumen

Analysengeräte (Hersteller/Typ) Thermo Scientific/DSQ (GC/LRMS)

Trennsäulen DB-5MS (60 m; 0,25 mm ID; 0,25 µm Filmdicke)

Standards Lösung der 16 PAK als Kalibrierstandard

Lösung der 16 PAK deuteriert als interner Standard

4.5.2.5 Verfahrenskenngrößen

Einfluss von Begleitstoffen (Querempfindlichkeiten) wird durch Probenaufbereitung minimiert

Die Methode ist hochselektiv, bei einigen PAK treten jedoch

Co-Elutionen auf.

Bestimmungsgrenze bei 10 m³ Probenahmevolumen für Benzo(a)pyren i.d.R. bei 0,001 μg/m³ (Phenanthren

0,005 µg/m<sup>3</sup>, Naphthalin 0,1 µg/m<sup>3</sup>)

relative erweiterte Messunsicherheit Die Messunsicherheiten für die o. g. analytischen Verfahren

wurden nach DIN ISO 11352\_2013-03 abgeleitet. Sie stellen jeweils die erweiterte Unsicherheit dar und wurden mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

Benzo(a)pyren: 24,0 %

### 4.5.2.6 Maßnahmen zur Qualitätssicherung

Blindwertbestimmungen und Bestimmung von Wiederfindungsraten durch Standardzugabe

QM-System gemäß DIN EN ISO/IEC 17025, Kalibrierungen gemäß Qualitätsmanagement Müller-BBM

Akkreditierung des Labors, regelmäßige Teilnahme an Ringversuchen für die o. g. Parameter

Dichtigkeitsprüfung der Probenahmeeinrichtung Bestimmung der Leckrate bei verschlossener

Sondenöffnung

Messunsicherheit siehe 6.3

### 4.6 Geruchsemission

entfällt

# 5 Betriebszustand der Anlage während der Messungen

Datenbasis: Betreiberangaben und Erhebungen durch Müller-BBM

# 5.1 Produktionsanlage

| Datum                               |         | 25.09.2024  | 26.09.2024  | 27.09.2024  |
|-------------------------------------|---------|-------------|-------------|-------------|
| Messzeitraum                        | Uhrzeit | 09 – 18 Uhr | 09 – 18 Uhr | 08 – 13 Uhr |
| Betriebsart                         |         | Volllast    | Volllast    | Volllast    |
| Lastfall                            | %       | 95 – 106    | 95 – 106    | 95 - 106    |
| Feuerraumtemperatur                 | °C      | 1150        | 1160        | 1060        |
| Dampfmenge                          | t/h     | 23 – 25     | 23 – 25     | 23 - 25     |
| Erdgasverbrauch Brenner             | m³/h    | 0           | 0           | 0           |
| Abweichung von genehmigter Betriebs | weise   | keine       | keine       | keine       |
| besondere Vorkommnisse              |         | keine       | keine       | keine       |

# 5.2 Abgasreinigungsanlagen

### Gewebefilter

| Datum              |         | 25.09.2024  | 26.09.2024  | 27.09.2024  |
|--------------------|---------|-------------|-------------|-------------|
| Messzeitraum       | Uhrzeit | 09 – 18 Uhr | 09 – 18 Uhr | 08 – 13 Uhr |
| Betriebsart        |         | Normal      | Normal      | Normal      |
| Filterdruck        | mbar    | 14          | 14          | 14          |
| Austragstemperatur | °C      | 130         | 130         | 130         |
| letzte Wartung     |         | 06/2024     | 06/2024     | 06/2024     |

# Additivzugaben

| Datum                                    |         | 25.09.2024  | 26.09.2024  | 27.09.2024  |
|------------------------------------------|---------|-------------|-------------|-------------|
| Messzeitraum                             | Uhrzeit | 09 – 18 Uhr | 09 – 18 Uhr | 08 – 13 Uhr |
| Kalkzugabe                               | %       | 0 – 20      | 0 – 20      | 0 - 20      |
| Harnstoffzugabe                          | l/h     | 15 - 25     | 15 - 25     | 15 – 25     |
| Abweichung von genehmigter Betriebsweise |         | keine       | keine       | keine       |
| besondere Vorkommnisse                   |         | keine       | keine       | keine       |

### 6 Zusammenstellung der Messergebnisse und Diskussion

### 6.1 Beurteilung der Betriebsbedingungen während der Messungen

Zum Zeitpunkt der Messungen wurde die Anlage bestimmungsgemäß betrieben. Die Durchführung der Messungen erfolgte bei den unter Abschnitt 5.1 aufgeführten Betriebsgrößen (Volllastbetrieb). Unter diesen Bedingungen lag zum Messzeitpunkt sowohl eine repräsentative wie auch eine maximale Auslastung der Anlage vor.

Die Vorgabe der Ziffer 5.3.2.2 TA Luft nach Betriebsbedingungen mit höchster Emission war erfüllt.

### 6.2 Messergebnisse

Nachfolgend werden die wichtigsten Messergebnisse zusammengefasst. Wenn nicht anders angegeben, beziehen sich alle Konzentrationen auf das trockene Abgas im Normzustand (273 K, 1013 hPa).

Bei den Summenbildungen bleiben Einzelstoffe (Metalle, PCDD/F- und dl-PCB-Kongenere, Benzo(a)pyren), deren Konzentrationen unterhalb der jeweiligen Bestimmungsgrenze liegen, unberücksichtigt (für den Fall, dass alle in der Summe enthaltenen Einzelkomponenten unterhalb der jeweiligen Bestimmungsgrenze liegen, ergibt sich demzufolge für den Summenwert der Zahlenwert "Null").

### Anmerkung: (für Anlagen der 17. BlmSchV)

Gemäß §18 Absatz 3 der 17. BlmSchV vom 13.02.2024 sind die periodischen Einzelmessungen nur einmal jährlich durchzuführen, wenn der Maximalwert der periodischen Messungen mit einem Vertrauensniveau von 50 % (nach der Richtlinie VDI 2448 Blatt 2, 07/1997) den jeweiligen Emissionsgrenzwert nicht überschreitet.

Tabelle 6.2.1. Messergebnisse Abgasrandbedingungen.

| Datum      | Zeit          | Р         | ٧    | Т                | H <sub>2</sub> O | O <sub>2</sub> | dV/dt, Betrieb | dV/dt, N,f   | dV/dt, N,tr |
|------------|---------------|-----------|------|------------------|------------------|----------------|----------------|--------------|-------------|
|            |               | hPa       | m/s  | °C               | Vol.%            | Vol.%          | m³/h           | m³/h,N,f     | m³/h,N,tr   |
| 25.09.2024 | 09:52-16:40   | 944,4     | 12,0 | 137,8            | 14,6             | 6,2            | 54724          | 33903        | 28951       |
| 26.09.2024 | 11:28-16:03   | 936,4     | 12,9 | 142,4            | 16,2             | 6,2            | 58922          | 35793        | 30002       |
| 27.09.2024 | 08:23-12:57   | 938,4     | 13,9 | 138,4            | 15,0             | 6,3            | 63551          | 39063        | 33193       |
| 25.09.2024 | 17:19-17:49   | 944,4     | 12,0 | 138,4            | 14,6             | 6,2            | 54506          | 33716        | 28798       |
| 26.09.2024 | 16:57-17:27   | 936,4     | 11,6 | 139,2            | 15,6             | 6,2            | 52702          | 32261        | 27224       |
| 27.09.2024 | 07:56-08:26   | 938,4     | 11,9 | 142,6            | 15,6             | 6,2            | 54362          | 33074        | 27928       |
| 25.09.2024 | 11:07-11:37   | 944,4     | 12,1 | 138,3            | 14,4             | 6,1            | 55303          | 34220        | 29307       |
| 25.09.2024 | 12:12-12:42   | 944,4     | 12,1 | 137,1            | 14,5             | 6,1            | 55384          | 34371        | 29388       |
| 26.09.2024 | 11:25-11:55   | 936,4     | 13,2 | 146,2            | 16,5             | 6,3            | 60329          | 36317        | 30326       |
| 26.09.2024 | 12:31-13:01   | 936,4     | 13,4 | 145,7            | 16,7             | 6,4            | 60987          | 36758        | 30631       |
| 27.09.2024 | 09:28-09:58   | 938,4     | 12,9 | 137,1            | 14,6             | 6,3            | 58659          | 36171        | 30876       |
| 27.09.2024 | 10:32-11:02   | 938,4     | 14,2 | 137,6            | 14,9             | 6,3            | 64940          | 39999        | 34020       |
| Р          | Druck         |           |      | Т                | Temperatu        | ır             | O <sub>2</sub> | Sauerstoff   |             |
| V          | Strömungsgeso | hwindigke | it   | H <sub>2</sub> O | Abgasfeuc        | chte           | dV/dt          | Volumenstrom |             |

**Tabelle 6.2.2.** Messergebnisse kontinuierliche Messparameter.

Komponente N<sub>2</sub>O

| Nr    | Datum           | Zeit            | $N_2O$    | $O_2$     | $N_2O$ $N_2O$ Up                      |
|-------|-----------------|-----------------|-----------|-----------|---------------------------------------|
|       |                 |                 |           |           | 1) 1)3) 2)3)                          |
|       |                 |                 | mg/m³     | Vol.%     | mg/m³,N mg/m³,N mg/m³,N               |
| 1     | 25.09.2024      | 09:30-10:00     | 17,11     | 6,3       | 11,61 11,6 24,2                       |
| 2     | 25.09.2024      | 10:00-10:30     | 15,57     | 6,3       | 10,56 10,5 22,2                       |
| 3     | 25.09.2024      | 10:30-11:00     | 12,46     | 6,2       | 8,39 8,3 17,9                         |
| 4     | 25.09.2024      | 11:00-11:30     | 13,89     | 6,1       | 9,30 9,3 19,7                         |
| 5     | 25.09.2024      | 11:30-12:00     | 15,17     | 6,2       | 10,23 10,2 21,5                       |
| 6     | 25.09.2024      | 12:00-12:30     | 13,83     | 6,1       | 9,26 9,2 19,6                         |
| 7     | 25.09.2024      | 12:30-13:00     | 13,68     | 6,1       | 9,16 9,1 19,4                         |
| 8     | 25.09.2024      | 14:30-15:00     | 13,82     | 6,1       | 9,27 9,2 19,6                         |
| 9     | 26.09.2024      | 11:30-12:00     | 11,69     | 6,4       | 7,98 7,9 17,2                         |
| 10    | 26.09.2024      | 12:00-12:30     | 11,08     | 6,3       | 7,53 7,5 16,3                         |
| 11    | 26.09.2024      | 12:30-13:00     | 13,11     | 6,4       | 8,99 8,9 19,1                         |
| 12    | 26.09.2024      | 13:00-13:30     | 14,92     | 6,3       | 10,12 10,1 21,3                       |
| 13    | 26.09.2024      | 13:30-14:00     | 14,57     | 6,3       | 9,93 9,9 20,9                         |
| 14    | 26.09.2024      | 14:00-14:30     | 11,59     | 6,1       | 7,80 7,7 16,8                         |
| 15    | 26.09.2024      | 14:30-15:00     | 12,76     | 6,1       | 8,57 8,5 18,3                         |
| 16    | 26.09.2024      | 15:00-15:30     | 12,45     | 6,1       | 8,38 8,3 17,9                         |
| 17    | 27.09.2024      | 08:00-08:30     | 6,84      | 6,3       | 4,64 < 5,0 11,0                       |
| 18    | 27.09.2024      | 08:30-09:00     | 4,92      | 6,2       | 3,33 < 5,0 8,9                        |
| 19    | 27.09.2024      | 09:00-09:30     | 1,41      | 6,3       | 0,96 < 5,0 6,1                        |
| 20    | 27.09.2024      | 09:30-10:00     | 2,89      | 6,4       | 1,98 < 5,0 7,1                        |
| 21    | 27.09.2024      | 10:00-10:30     | 4,74      | 6,1       | 3,18 < 5,0 8,6                        |
| 22    | 27.09.2024      | 10:30-11:00     | 4,58      | 6,3       | 3,12 < 5,0 8,6                        |
| 23    | 27.09.2024      | 11:00-11:30     | -0,14     | 6,1       | -0,09 < 5,0 5,8                       |
| 24    | 27.09.2024      | 11:30-12:00     | 0,93      | 6,2       | 0,63 < 5,0 5,9                        |
| Mitte | elwert (Werte I | kleiner Bestimm | nungsgren | ze (BG) n | it 0% der BG berücksichtigt) 6,1      |
| Max   | imalwert        |                 |           | . ,       | 11,6                                  |
| Max   | imalwert - er   | weiterte Messı  | unsicherh | eit       | 0                                     |
| Max   | imalwert + er   | weiterte Mess   | unsicherl | heit      | 36                                    |
|       | nzwert          |                 |           |           | • • • • • • • • • • • • • • • • • • • |
| ##    |                 |                 |           |           | 18                                    |

<sup>1)</sup> bezogen auf 11 Vol.% O<sub>2</sub>

**Tabelle 6.2.3.** Messergebnisse diskontinuierliche Messparameter.

| Komponente | Hg |
|------------|----|
|------------|----|

| Nr    | Deture        | 7a:4            | l la       | 0         | Volumen                                      | l la          | l la            | l le            | II.       | Un          |
|-------|---------------|-----------------|------------|-----------|----------------------------------------------|---------------|-----------------|-----------------|-----------|-------------|
| INI   | Datum         | Zeit            | Hg         | $O_2$     | >                                            | Hg            | Hg              | Up              | Hg        | Up          |
|       |               |                 | μg/Probe   | Vol.%     | m³N                                          | 1)<br>µg/m³,N | 1)3)<br>mg/m³,N | 2)3)<br>mg/m³,N | 3)<br>g/h | 2)3)<br>g/h |
| 1     | 25.09.2024    | 11:07-11:37     | 0,02       | 6,1       | 0,047                                        | 0,47          | 0,0004          | 0,0000          | 0,013     | 0,002       |
| 2     | 25.09.2024    | 12:12-12:42     | 0,01       | 6,1       | 0,046                                        | 0,28          | 0,0002          | 0,0000          | 0,008     | 0,001       |
| 3     | 26.09.2024    | 11:25-11:55     | 0,01       | 6,3       | 0,046                                        | 0,30          | 0,0002          | 0,0000          | 0,009     | 0,001       |
| 4     | 26.09.2024    | 12:31-13:01     | 0,00       | 6,4       | 0,045                                        | 0,00          | < 0,00024       | 0,0000          | < 0,0073  | 0,001       |
| 5     | 27.09.2024    | 09:28-09:58     | 0,01       | 6,3       | 0,051                                        | 0,29          | 0,0002          | 0,0000          | 0,008     | 0,001       |
| 6     | 27.09.2024    | 10:32-11:02     | 0,01       | 6,3       | 0,050                                        | 0,21          | < 0,00024       | 0,0000          | < 0,0081  | 0,001       |
| Mitte | elwert (Werte | kleiner Bestimi | mungsgren: | ze (BG) n | nit 0% der BG berücksichtigt)                |               | 0,0002          |                 | 0,006     |             |
| Max   | imalwert      |                 |            |           |                                              |               | 0,0004          |                 | 0,013     |             |
| Max   | imalwert - er | weiterte Mess   | unsicherh  | eit       |                                              |               | 0,00            |                 | 0,01      |             |
| Max   | imalwert + e  | rweiterte Mes   | sunsicherh | eit       |                                              |               | 0,00            |                 | 0,02      |             |
| Gre   | nzwert        |                 |            |           |                                              |               | 0,01            |                 | -         |             |
| Vert  | rauensgrenze  | (50%; Faktor    | 1,65)      |           |                                              |               | 0,00            |                 | 0,02      |             |
| 1) h  |               | Val 0/ 0 mus    | ha: Üharaa |           | dos Bozugossuprotoffgobaltos von 11 Vol 9/ O |               |                 |                 |           |             |

<sup>1)</sup> bezogen auf 11 Vol.%  $\rm O_2$  nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.%  $\rm O_2$ 

<sup>2)</sup> Bestimmung der Messunsicherheit (Up): indirekt

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

<sup>2)</sup> Bestimmung der Messunsicherheit (Up): indirekt

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

| Nr    | Datum         | Zeit            | HCN<br>mg/Probe | O <sub>2</sub> |                               | HCN<br>1)<br>mg/m³,N | HCN<br>1)3)<br>mg/m³,N | Up<br>2)3)<br>mg/m³,N | HCN<br>3)<br>g/h | Up<br>2)3)<br>g/h |
|-------|---------------|-----------------|-----------------|----------------|-------------------------------|----------------------|------------------------|-----------------------|------------------|-------------------|
| 1     | 25.09.2024    | 11:07-11:37     | 0,00            | 6,1            | 0,049                         | 0,00                 | < 0,06                 | 0,01                  | < 1,75           | 0,3               |
| 2     | 25.09.2024    | 12:12-12:42     | 0,00            | 6,1            | 0,050                         | 0,00                 | < 0,06                 | 0,01                  | < 1,76           | 0,3               |
| 3     | 26.09.2024    | 11:25-11:55     | 0,00            | 6,3            | 0,053                         | 0,00                 | < 0,06                 | 0,01                  | < 1,81           | 0,3               |
| 4     | 26.09.2024    | 12:31-13:01     | 0,00            | 6,4            | 0,052                         | 0,00                 | < 0,06                 | 0,01                  | < 1,83           | 0,3               |
| 5     | 27.09.2024    | 09:28-09:58     | 0,00            | 6,3            | 0,051                         | 0,00                 | < 0,06                 | 0,01                  | < 1,85           | 0,3               |
| 6     | 27.09.2024    | 10:32-11:02     | 0,00            | 6,3            | 0,051                         | 0,00                 | < 0,06                 | 0,01                  | < 2,04           | 0,4               |
| Mitte | elwert (Werte | kleiner Bestimi | mungsgren:      | ze (BG) n      | nit 0% der BG berücksichtigt) |                      | 0,00                   |                       | 0,00             |                   |
| Max   | imalwert      |                 |                 |                |                               |                      | 0,00                   |                       | 0,00             |                   |
| Max   | imalwert - er | weiterte Mess   | sunsicherh      | eit            |                               |                      | 0                      |                       | 0                |                   |
| Max   | imalwert + e  | weiterte Mes    | sunsicherh      | eit            |                               |                      | 0                      |                       | 0                |                   |
| Gre   | nzwert        |                 |                 |                |                               |                      | -                      |                       | 15               |                   |
| Vert  | rauensgrenze  | (50%; Faktor    | 1,65)           |                |                               |                      | 0                      |                       | 0                |                   |

- 1) bezogen auf Vol.% O<sub>2</sub> nur bei Überschreitung des Bezugssauerstoffgehaltes von Vol.% O<sub>2</sub>
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

### Komponente HF

| Nr    | Datum                | Zeit            | HF<br>mg/Probe | O <sub>2</sub><br>Vol.% | Volumen<br>Volumen            | HF<br>1)<br>mg/m³,N | HF<br>1)3)<br>mg/m³,N | Up<br>2)3)<br>mg/m³,N | HF<br>3)<br>g/h | Up<br>2)3)<br>g/h |
|-------|----------------------|-----------------|----------------|-------------------------|-------------------------------|---------------------|-----------------------|-----------------------|-----------------|-------------------|
| 1     | 25.09.2024           | 11:07-11:37     | 0,000          | 6,1                     | 0,049                         | 0,000               | < 0,06                | 0,01                  | < 1,75          | 0,3               |
| 2     | 25.09.2024           | 12:12-12:42     | 0,000          | 6,1                     | 0,050                         | 0,000               | < 0,06                | 0,01                  | < 1,76          | 0,3               |
| 3     | 26.09.2024           | 11:25-11:55     | 0,000          | 6,3                     | 0,053                         | 0,000               | < 0,06                | 0,01                  | < 1,81          | 0,3               |
| 4     | 26.09.2024           | 12:31-13:01     | 0,000          | 6,4                     | 0,052                         | 0,000               | < 0,06                | 0,01                  | < 1,83          | 0,3               |
| 5     | 27.09.2024           | 09:28-09:58     | 0,000          | 6,3                     | 0,051                         | 0,000               | < 0,06                | 0,01                  | < 1,85          | 0,3               |
| 6     | 27.09.2024           | 10:32-11:02     | 0,000          | 6,3                     | 0,051                         | 0,000               | < 0,06                | 0,01                  | < 2,04          | 0,4               |
| Mitte | elwert (Werte        | kleiner Bestimi | mungsgren      | ze (BG) r               | nit 0% der BG berücksichtigt) |                     | 0,000                 |                       | 0,00            |                   |
| Max   | imalwert             |                 |                |                         |                               |                     | 0,000                 |                       | 0,00            |                   |
| Max   | imalwert - er        | weiterte Mess   | unsicherh      | eit                     |                               |                     | 0,0                   |                       | 0               |                   |
| Max   | mg/Probe Vol.%   m³N |                 |                |                         |                               | 0,0                 |                       | 0                     |                 |                   |
| Gre   | nzwert               |                 |                |                         |                               |                     | 0,9                   |                       | -               |                   |
| Vert  | rauensgrenze         | (50%; Faktor    | 1,65)          |                         |                               |                     | 0,0                   |                       | 0               |                   |

- 1) bezogen auf 11 Vol.% O<sub>2</sub> nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O<sub>2</sub>
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

Tabelle 6.2.4. Messergebnisse partikelförmige Messparameter.

| Komponente | Schwermetalle (Co | d TI) nach     | 88(1)3  | Anlage 1 a der 17 | RImSchV      |
|------------|-------------------|----------------|---------|-------------------|--------------|
| Komponente | ochwermetane (co  | u, iii) iiacii | 30(1)3, | Amage rauer r     | . Dilliocity |

|        |                 |                   | 3 - (1) - (1)         |                    | • •    |                |                            |                                          |                       |                              |                   |
|--------|-----------------|-------------------|-----------------------|--------------------|--------|----------------|----------------------------|------------------------------------------|-----------------------|------------------------------|-------------------|
| Nr     | Datum           | Zeit              | O₂<br>Vol.%           | Volumen<br>N°8     | m Düse | % Absaugfehler | δη<br>W,ε (1<br>Anlage 1 a | w/sw<br>(E) Summe nach<br>(E) Anlage 1 a | Up<br>2)3)<br>mg/m³,N | Summe nach<br>J © Anlage 1 a | Up<br>2)3)<br>g/h |
| 1      | 25.09.2024      | 17:19-17:49       | 6,2                   | 0,567              | 8      | -1             | 0,00                       | 0,0000                                   | 0,0000                | 0,000                        | 0,000             |
| 2      | 26.09.2024      | 16:57-17:27       | 6,2                   | 0,564              | 8      | 4              | 0,00                       | 0.0000                                   | 0,0000                | 0,000                        | 0,000             |
| _      |                 |                   | ,                     | ,                  |        |                | ,                          | -,                                       |                       | ,                            | ,                 |
| 3      | 27.09.2024      | 07:56-08:26       | 6,2                   | 0,630              | 8      | 14             | 0,00                       | 0,0000                                   | 0,0000                | 0,000                        | 0,000             |
| Mittel | wert (Werte kle | einer Bestimmungs | grenze (BG) mit 0% de | BG berücksichtigt) |        |                |                            | 0,0000                                   |                       | 0,000                        |                   |
| Maxir  | nalwert         |                   |                       |                    |        |                |                            | 0,0000                                   |                       | 0,000                        |                   |
| Maxir  | nalwert - erwe  | eiterte Messunsic | herheit               |                    |        |                |                            | 0,00                                     |                       | 0,0                          |                   |
| Maxir  | nalwert + erw   | eiterte Messunsic | herheit               |                    |        |                |                            | 0,00                                     |                       | 0,0                          |                   |
| Grenz  | zwert           |                   |                       |                    |        |                |                            | 0,02                                     |                       | -                            |                   |
| Vertra | uensgrenze (5   | 50%; Faktor 1,8)  |                       |                    |        |                |                            | 0,00                                     |                       | 0,0                          |                   |

- 1) bezogen auf 11 Vol.% O<sub>2</sub> nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O<sub>2</sub>
- 2) Bestimmung der Messunsicherheit (Up): indirekt
- 3) Rundung gemäß bundeseinheitlichem Mustermessbericht

0,05

0,00

0,0

| Kom    | onente                    | Schwermetalle (S   | b, As, Pb, Cr, Co, Cu, Mn | , Ni, V, Sn) nach § 8 (1 | ) 3, Anl | age 1 b        | der 17. Blr                    | nSchV                            |                       |                              |                   |
|--------|---------------------------|--------------------|---------------------------|--------------------------|----------|----------------|--------------------------------|----------------------------------|-----------------------|------------------------------|-------------------|
| Nr     | Datum                     | Zeit               | O <sub>2</sub><br>Vol.%   | Volumen<br>Ve            | a Düse   | % Absaugfehler | Summe nach<br>W,t, (Anlage 1 b | w. (E( Summe nach (E) Anlage 1 b | Up<br>2)3)<br>mg/m³.N | Summe nach<br>a ( Anlage 1 b | Up<br>2)3)<br>g/h |
| 1      | 25.09.2024                | 17:19-17:49        | 6,2                       | 0,567                    | 8        | -1             | 8,38                           | 0,008                            | 0,000                 | 0,24                         | 0,02              |
| 2      | 26.09.2024                | 16:57-17:27        | 6,2                       | 0,564                    | 8        | 4              | 3,23                           | 0,003                            | 0,000                 | 0,08                         | 0,009             |
| 3      | 27.09.2024                | 07:56-08:26        | 6,2                       | 0,630                    | 8        | 14             | 1,09                           | 0,001                            | 0,000                 | 0,03                         | 0,003             |
|        | wert (Werte kl<br>nalwert | einer Bestimmungs  | grenze (BG) mit 0% der BG | 6 berücksichtigt)        |          |                |                                | 0,004<br><b>0,008</b>            |                       | 0,11<br><b>0,24</b>          |                   |
| Maxii  | nalwert - erw             | eiterte Messunsich | nerheit                   |                          |          |                |                                | 0,0                              |                       | 0,2                          |                   |
| Maxii  | nalwert + erw             | veiterte Messunsic | herheit                   |                          |          |                |                                | 0,0                              |                       | 0,3                          |                   |
| Gren   | zwert                     |                    |                           |                          |          |                |                                | 0,3                              |                       | -                            |                   |
| Vertra | auensgrenze (             | 50%; Faktor 1,8)   |                           |                          |          |                |                                | 0,0                              |                       | 0,4                          |                   |

<sup>1)</sup> bezogen auf 11 Vol.% O<sub>2</sub> nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% O<sub>2</sub>

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

| Komp  | onente        | Stoffe nach § 8 ( | 1) 3, Anlage 1 c der 17. BlmSchV     |         |      |              |                           |               |            |                            |            |
|-------|---------------|-------------------|--------------------------------------|---------|------|--------------|---------------------------|---------------|------------|----------------------------|------------|
| Nr    | Datum         | Zeit              | $O_2$                                | Volumen | Düse | Absaugfehler | Summe nach<br>(Anlage 1 c | Us Summe nach | Up<br>2)3) | ည Summe nach<br>Anlage 1 c | Up<br>2)3) |
|       |               |                   | Vol.%                                | m³N     | mm   | %            | μg/m³,N                   | mg/m³,N       | mg/m³,N    | g/h                        | g/h        |
| 1     | 25.09.2024    | 17:19-17:49       | 6,2                                  | 0,567   | 8    | -1           | 0,00                      | 0,0000        | 0,0000     | 0,000                      | 0,000      |
| 2     | 26.09.2024    | 16:57-17:27       | 6,2                                  | 0,564   | 8    | 4            | 0,00                      | 0,0000        | 0,0000     | 0,000                      | 0,000      |
| 3     | 27.09.2024    | 07:56-08:26       | 6,2                                  | 0,630   | 8    | 14           | 0,00                      | 0,0000        | 0,0000     | 0,000                      | 0,000      |
|       | ,             | einer Bestimmungs | sgrenze (BG) mit 0% der BG berücksic | htigt)  |      |              |                           | 0,0000        |            | 0,000                      |            |
| Maxir | nalwert       |                   |                                      |         |      |              |                           | 0,0000        |            | 0,000                      |            |
| Maxir | nalwert - erw | eiterte Messunsic | cherheit                             |         |      |              |                           | 0,00          |            | 0,0                        |            |
| Maxir | nalwert + erw | eiterte Messunsi  | cherheit                             |         |      |              |                           | 0,00          |            | 0,0                        |            |

 $<sup>\</sup>frac{\text{Vertrauensgrenze (50\%; Faktor 1,8)}}{\text{1) bezogen auf 11 Vol.\% }O_2 \text{ nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.% }O_2$ 

Grenzwert

**Tabelle 6.2.5.** Messergebnisse besondere hochtoxische Messparameter.

| Kom    | onente         | PCDD/F + dl-    | РСВ                     |              |                                        |             |                |                              |                                |                       |                           |                    |
|--------|----------------|-----------------|-------------------------|--------------|----------------------------------------|-------------|----------------|------------------------------|--------------------------------|-----------------------|---------------------------|--------------------|
| Nr     | Datum          | Zeit            | WHO-<br>TEQ<br>ng/Probe | O₂<br>Vol.%  | Volumen Volumen                        | mm<br>Düse  | % Absaugfehler | WHO-<br>TEQ<br>1)<br>ng/m³,N | WHO-<br>TEQ<br>1)3)<br>ng/m³,N | Up<br>2)3)<br>na/m³.N | WHO-<br>TEQ<br>3)<br>mg/h | Up<br>2)3)<br>mg/h |
| 1      | 25.09.2024     | 09:52-16:40     | 0,0000                  | 6,2          | 7,586                                  | 8           | 3              | 0,0000                       | 0,0000                         | 0,0000                | 0,000                     | 0,000              |
| 2      | 26.09.2024     | 11:28-16:03     | 0,0000                  | 6,2          | 5,706                                  | 8           | 5              | 0,0000                       | 0,0000                         | 0,0000                | 0,000                     | 0,000              |
| 3      | 27.09.2024     | 08:23-12:57     | 0,0000                  | 6,3          | 6,176                                  | 8           | 3              | 0,0000                       | 0,0000                         | 0,0000                | 0,000                     | 0,000              |
| Mittel | wert (Werte kl | einer Bestimmu  | ıngsgrenze              | (BG) mit     | der BG berücksichtigt)                 |             |                |                              | 0,0000                         |                       | 0,000                     |                    |
|        | nalwert        |                 |                         | . ,          | 3,                                     |             |                |                              | 0,0000                         |                       | 0,000                     |                    |
| Maxii  | nalwert - erw  | eiterte Messul  | nsicherhei              | t            |                                        |             |                |                              | 0,00                           |                       | 0,0                       |                    |
| Maxii  | nalwert + erw  | eiterte Messu   | nsicherhe               | it           |                                        |             |                |                              | 0,00                           |                       | 0,0                       |                    |
| Gren   | zwert          |                 |                         |              |                                        |             |                |                              | 0,08                           |                       | -                         |                    |
| Vertra | auensgrenze (  | 50%; Faktor 1,8 | 8)                      |              |                                        |             |                |                              | 0,00                           |                       | 0,0                       |                    |
| 4\ ha: |                | /al 0/ 0 aua ha | م عام معم عال ا         | ملم سميينانم | zugggggggggggggggggggggggggggggggggggg | 4 1/51.0/ / | ^              |                              |                                |                       |                           |                    |

<sup>1)</sup> bezogen  $\overline{\text{auf 11 Vol.\% O}_2}$  nur bei Überschreitung des Bezugssauerstoffgehaltes von 11 Vol.%  $\overline{\text{O}}_2$ 

<sup>2)</sup> Bestimmung der Messunsicherheit (Up): indirekt

Bestimmung der Messunsicherheit (Up): indirekt

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

<sup>2)</sup> Bestimmung der Messunsicherheit (Up): indirekt

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

### 6.3 Messunsicherheiten

Die Messunsicherheiten wurden entsprechend der Müller-BBM-Prüfanweisung PA16-1Z06, basierend auf der Richtlinie VDI 4219, mittels indirekten Ansatzes berechnet.

Als Grundlage des Berechnungsverfahrens dient das Fehlerfortpflanzungsgesetz nach Gauß. Die Messunsicherheiten sind für den Maximalwert in den nachfolgenden Ergebnistabellen aufgeführt.

Tabelle 6.3.1. Messunsicherheit Massenkonzentration.

| Komponente                                                                                       |    | Einheit | Y <sub>max</sub> | U <sub>P</sub> | Y <sub>max</sub> -U <sub>P</sub> *) | Y <sub>max</sub> +U <sub>P</sub> *) | Bestimmungs-<br>methode |
|--------------------------------------------------------------------------------------------------|----|---------|------------------|----------------|-------------------------------------|-------------------------------------|-------------------------|
| Hg                                                                                               |    | mg/m³,N | 0,0004           | 0,0000         | 0,00                                | 0,00                                | indirekt                |
| HCN                                                                                              |    | mg/m³,N | 0,00             | 0,01           | 0                                   | 0                                   | indirekt                |
| HF                                                                                               |    | mg/m³,N | 0,000            | 0,01           | 0,0                                 | 0,0                                 | indirekt                |
| N <sub>2</sub> O                                                                                 |    | mg/m³,N | 11,6             | 24,2           | 0                                   | 36                                  | indirekt                |
| Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV                                |    | mg/m³,N | 0,0000           | 0,0000         | 0,00                                | 0,00                                | indirekt                |
| Schwermetalle (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) nach § 8 (1) 3, Anlage 1 b der 17. BlmSchV |    | mg/m³,N | 0,008            | 0,000          | 0,0                                 | 0,0                                 | indirekt                |
| Stoffe nach § 8 (1) 3, Anlage 1 c<br>der 17. BlmSchV                                             | 2) | mg/m³,N | 0,0000           | 0,0000         | 0,00                                | 0,00                                | indirekt                |
| PCDD/F + dl-PCB                                                                                  | 1) | ng/m³,N | 0,0000           | 0,0000         | 0,00                                | 0,00                                | indirekt                |

<sup>\*)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

 $Y_{\text{max}}$ : maximaler Messw ert  $U_{\text{P}}$ : Messunsicherheit

Tabelle 6.3.2. Messunsicherheit Massenstrom.

| Komponente                                                                                       |    | Einheit | Y <sub>max</sub> | U <sub>P</sub> | Y <sub>max</sub> -U <sub>P</sub> *) | Y <sub>max</sub> +U <sub>P</sub> *) | Bestimmungs-<br>methode |
|--------------------------------------------------------------------------------------------------|----|---------|------------------|----------------|-------------------------------------|-------------------------------------|-------------------------|
| Hg                                                                                               |    | g/h     | 0,013            | 0,002          | 0,01                                | 0,02                                | indirekt                |
| HCN                                                                                              |    | g/h     | 0,00             | 0,3            | 0                                   | 0                                   | indirekt                |
| HF                                                                                               |    | g/h     | 0,00             | 0,3            | 0                                   | 0                                   | indirekt                |
| Schwermetalle (Cd, Tl) nach § 8 (1) 3, Anlage 1 a der 17. BlmSchV                                |    | g/h     | 0,000            | 0,000          | 0,0                                 | 0,0                                 | indirekt                |
| Schwermetalle (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn) nach § 8 (1) 3, Anlage 1 b der 17. BlmSchV |    | g/h     | 0,24             | 0,02           | 0,2                                 | 0,3                                 | indirekt                |
| Stoffe nach § 8 (1) 3, Anlage 1 c<br>der 17. BlmSchV                                             | 2) | g/h     | 0,000            | 0,000          | 0,0                                 | 0,0                                 | indirekt                |
| PCDD/F + dl-PCB                                                                                  | 1) | mg/h    | 0,000            | 0,000          | 0,0                                 | 0,0                                 | indirekt                |

<sup>\*)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

Y<sub>max</sub>: maximaler Messwert

U<sub>P</sub>: Messunsicherheit

<sup>\*\*)</sup> Maximalw ertes f<sub>max,50</sub>

<sup>1)</sup> Fremdanalytik (siehe 1.12)

<sup>2)</sup> teilw eise Fremdanalytik (Benzo(a)pyren) (siehe 1.12)

<sup>\*\*)</sup> Maximalw ertes f<sub>max,50</sub>

<sup>1)</sup> Fremdanalytik (siehe 1.12)

<sup>2)</sup> teilw eise Fremdanalytik (Benzo(a)pyren) (siehe 1.12)

### 6.4 Plausibilitätsprüfung

Durch die Einhaltung der erforderlichen Verbrennungstemperaturen und den Betrieb offensichtlich funktionsfähiger Abgasreinigungsanlagen (vgl. Abschnitte 5.1 und 5.2) wurden Messergebnisse ermittelt, wie sie unter vergleichbaren Bedingungen zu erwarten waren und auch an anderen Anlagen dieser oder ähnlicher Bauart gemessen wurden. Die Ergebnisse sind daher insgesamt als plausibel einzustufen.

Für den Inhalt des Berichtes zeichnen verantwortlich:

Dipl.-Ing. (FH) Frank Ellner-Schuberth

Projektleitung Berichterstellung

Telefon +49(911)600445-15

Staatl. gepr. UTA Raphael Teuber

Qualitätssicherung, Stellv. Fachl. Verantwortlich

Telefon +49(3643)81189-0

Caphall

Dieser Bericht darf nur in seiner Gesamtheit, einschließlich aller Anlagen, vervielfältigt, gezeigt oder veröffentlicht werden. Die Veröffentlichung von Auszügen bedarf der schriftlichen Genehmigung durch Müller-BBM. Die Ergebnisse beziehen sich nur auf die untersuchten Gegenstände.





Durch die DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage aufgeführten Akkreditierungsumfang.

# 7 Anlagen

Anlage 1: Mess- und Rechenwerte

Anlage 2: Graphische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

Anlage 3: Prüfmittelkatalog

Anlage 4: Einzelergebnisse PCDD/F, dI-PCB und B(a)p

### Anlage 1: Mess- und Rechenwerte

 Tabelle 7.1.1. Mess- und Rechenwerte Abgasrandbedingungen/Strömungsprofil.

Projekt-Nr. M175121 Betreiber ВНІ EMI\_2024 Anlage Messstelle Brennstoff Holzbrennstoffe Betriebszustand Nennlast WAF Pos. 10.4, EN16911-1 1,000 Datum 25.09.2024 Faktor Staudrucksonde 0,989 Luftdruck hPa 945,0 O<sub>2</sub>-Konzentration Vol.% 6,2 statischer Druck hPa -0,6 CO<sub>2</sub>-Konzentration Vol.% 14,1 Kanalform kreisförmig Abgastemperatur °C 145,0 Abgasfeuchte Vol.% 15,5 Kanaldurchmesser m 1,27 g/m³ 147,4 Abgasfeuchte Kanalfläche m<sup>2</sup> 1,267 Anzahl der Messachsen Dichte Betrieb kg/m³ 0,780 2 kg/m³ 1,282 Anzahl der Messpunkte/Achse 4 Dichte N,f kg/m³ 1,369 Anzahl der Messpunkte/Ebene 8 Dichte N,tr Teilfläche m<sup>2</sup> 0,158

| Zeit  | Teilfläche  | Eintauchtiefe | dynamischer<br>Druck | Geschwindigkeit<br>Betrieb | dV/dt<br>Betrieb | dV/dt<br>N,f | dV/dt<br>N,tr |
|-------|-------------|---------------|----------------------|----------------------------|------------------|--------------|---------------|
| hh:mm | (Achse/Nr.) | mm            | hPa                  | m/s                        | m³/h             | m³/h         | m³/h          |
| 08:38 | 1           | 85            | 0,51                 | 11,3                       | 6446             | 3924         | 3316          |
|       | 1           | 318           | 0,55                 | 11,8                       | 6714             | 4088         | 3454          |
|       | 1           | 953           | 0,71                 | 13,3                       | 7605             | 4630         | 3913          |
|       | 1           | 1185          | 0,69                 | 13,2                       | 7497             | 4565         | 3857          |
|       | 2           | 85            | 0,77                 | 13,9                       | 7903             | 4812         | 4066          |
|       | 2           | 318           | 0,85                 | 14,6                       | 8321             | 5066         | 4281          |
|       | 2           | 953           | 0,85                 | 14,6                       | 8338             | 5076         | 4290          |
| 08:54 | 2           | 1185          | 0,77                 | 13,9                       | 7937             | 4833         | 4084          |
|       |             | Mittelwert    | 0,71                 | 13,32                      |                  |              |               |
|       |             | Summe         | ·                    |                            | 60762            | 36995        | 31261         |

 Tabelle 7.1.2.
 Mess- und Rechenwerte kontinuierliche Messparameter.

| Driften N2O | berechnet mit | Maximalwert   | Toleranz |
|-------------|---------------|---------------|----------|
| Datum       | Nullpunkt     | Referenzpunkt |          |
| Prüfmittel  | 0,0           | 290,1         | 2,0%     |
|             |               |               |          |
| 25.09.2024  | 0,2           | 290,5         | mg/m³    |
| 25.09.2024  | -1,2          | 288,9         | mg/m³    |
| Drift [%]   | -0,5          | -0,1          |          |
| 26.09.2024  | -2,2          | 288,5         | mg/m³    |
| 26.09.2024  | -2,4          | 288,9         | mg/m³    |
| Drift [%]   | -0,1          | 0,2           |          |
| 27.09.2024  | -2,6          | 288,5         | mg/m³    |
| 27.09.2024  | -2,0          | 287,1         | mg/m³    |
| Drift [%]   | 0,2           | -0,7          |          |

ELR/MNR

| Driften O2                | berechnet mit | Maximalwert   | Toleranz |
|---------------------------|---------------|---------------|----------|
| Datum                     | Nullpunkt     | Referenzpunkt |          |
| Prüfmittel                | 0,00          | 20,95         | 0,5%     |
|                           |               |               |          |
| 25.09.2024                | -0,02         | 20,82         | Vol.%    |
| 25.09.2024                | 0,00          | 20,73         | Vol.%    |
| Drift [%]                 | 0,1           | -0,5          |          |
| 26.09.2024                | 0,01          | 20,80         | Vol.%    |
| 26.09.2024                | -0,03         | 20,65         | Vol.%    |
| Drift [%]                 | -0,2          | -0,5          |          |
| 27.09.2024                | -0,02         | 20,69         | Vol.%    |
| 27.09.2024                | 0,00          | 20,81         | Vol.%    |
| Drift [%]                 | 0,1           | 0,5           |          |
| Komponente O <sub>2</sub> |               |               |          |

| Nr | Datum      | Zeit        | $O_2$ | $O_2$   | $O_2$   | Up      |   |
|----|------------|-------------|-------|---------|---------|---------|---|
|    |            |             |       | 1)      | 1)3)    | 2)3)    |   |
|    |            |             | Vol.% | Vol.%,N | Vol.%,N | Vol.%,N |   |
| 1  | 25.09.2024 | 09:52-16:40 | 6,23  | 6,23    | 6,2     | 0,2     |   |
| 2  | 26.09.2024 | 11:28-16:03 | 6,24  | 6,24    | 6,2     | 0,2     |   |
| 3  | 27.09.2024 | 08:23-12:57 | 6,26  | 6,26    | 6,2     | 0,2     |   |
| 4  | 25.09.2024 | 17:19-17:49 | 6,18  | 6,18    | 6,1     | 0,2     |   |
| 5  | 26.09.2024 | 16:57-17:27 | 6,17  | 6,17    | 6,1     | 0,2     |   |
| 6  | 27.09.2024 | 07:56-08:26 | 6,22  | 6,22    | 6,2     | 0,2     |   |
| 7  | 25.09.2024 | 11:07-11:37 | 6,07  | 6,07    | 6,0     | 0,2     |   |
| 8  | 25.09.2024 | 12:12-12:42 | 6,08  | 6,08    | 6,0     | 0,2     |   |
| 9  | 26.09.2024 | 11:25-11:55 | 6,32  | 6,32    | 6,3     | 0,2     |   |
| 10 | 26.09.2024 | 12:31-13:01 | 6,39  | 6,39    | 6,3     | 0,2     |   |
| 11 | 27.09.2024 | 09:28-09:58 | 6,25  | 6,25    | 6,2     | 0,2     |   |
| 12 | 27.09.2024 | 10:32-11:02 | 6,30  | 6,30    | 6,3     | 0,2     | _ |

<sup>1)</sup> keine O<sub>2</sub>-Bezugswertrechnung

 Tabelle 7.1.3.
 Mess- und Rechenwerte diskontinuierliche Messparameter.

# Komponente Hg

| Datum      | Zeit        | Faktor GZ | GZ    | T GZ | p Luft | Probe | Analyse  | Hg    | Proben-   |
|------------|-------------|-----------|-------|------|--------|-------|----------|-------|-----------|
|            |             |           | m³    | °C   | hPa    | m³N   | μg/Probe | µg/m³ | bezeichn. |
| 25.09.2024 | 11:07-11:37 | 0,976     | 0,054 | 14,5 | 945    | 0,047 | 0,02     | 0,47  | 1         |
| 25.09.2024 | 12:12-12:42 | 0,976     | 0,053 | 17,0 | 945    | 0,046 | 0,01     | 0,28  | 2         |
| 26.09.2024 | 11:25-11:55 | 0,976     | 0,055 | 16,5 | 937    | 0,046 | 0,01     | 0,30  | 3         |
| 26.09.2024 | 12:31-13:01 | 0,976     | 0,053 | 17,5 | 937    | 0,045 | 0,00     | 0,00  | 4         |
| 27.09.2024 | 09:28-09:58 | 0,976     | 0,058 | 12,5 | 939    | 0,051 | 0,01     | 0,29  | 5         |
| 27.09.2024 | 10:32-11:02 | 0,976     | 0,058 | 14,0 | 939    | 0,050 | 0,01     | 0,21  | 6         |
|            |             |           |       | D.:  |        |       |          |       |           |

Blindwert
Bestimmungsgrenze

0,00 0,08 0,01 0,24

Bestimmung der Messunsicherheit (Up): indirekt

<sup>3)</sup> Rundung gemäß bundeseinheitlichem Mustermessbericht

# Komponente Hg part

| Datum      | Zeit        | Faktor GZ | GZ    | T GZ | p Luft  | Probe | Analyse  | Hg part | Proben-   |
|------------|-------------|-----------|-------|------|---------|-------|----------|---------|-----------|
|            |             |           | m³    | °C   | hPa     | m³N   | μg/Probe | µg/m³   | bezeichn. |
| 25.09.2024 | 10:33-17:00 | 1,000     | 1,089 | 0,0  | 1013,25 | 1,089 | 0,000    | 0,00    | M168      |
| 26.09.2024 | 08:59-16:34 | 1,000     | 0,973 | 0,0  | 1013,25 | 0,973 | 0,000    | 0,00    | M44       |
| 27.09.2024 | 08:55-13:34 | 1,000     | 0,714 | 0,0  | 1013,25 | 0,714 | 0,000    | 0,00    | F252      |
| Blindwert  |             |           |       |      |         |       | 0,000    | 0,00    |           |

Bestimmungsgrenze

Komponente HCN

| Datum      | Zeit        | Faktor GZ | GZ    | T GZ | p Luft | Probe | Analyse  | HCN   | Proben-   |
|------------|-------------|-----------|-------|------|--------|-------|----------|-------|-----------|
|            |             |           | m³    | °C   | hPa    | m³N   | mg/Probe | mg/m³ | bezeichn. |
| 25.09.2024 | 11:07-11:37 | 0,994     | 0,056 | 14,5 | 945    | 0,049 | 0,000    | 0,0   | 1         |
| 25.09.2024 | 12:12-12:42 | 0,994     | 0,057 | 16,5 | 945    | 0,050 | 0,000    | 0,0   | 2         |
| 26.09.2024 | 11:25-11:55 | 0,994     | 0,061 | 16,0 | 937    | 0,053 | 0,000    | 0,0   | 3         |
| 26.09.2024 | 12:31-13:01 | 0,994     | 0,060 | 17,0 | 937    | 0,052 | 0,000    | 0,0   | 4         |
| 27.09.2024 | 09:28-09:58 | 0,994     | 0,058 | 12,5 | 939    | 0,051 | 0,000    | 0,0   | 5         |
| 27.09.2024 | 10:32-11:02 | 0,994     | 0,059 | 13,5 | 939    | 0,051 | 0,000    | 0,0   | 6         |
|            | •           |           |       |      |        | •     |          |       |           |

 Blindwert
 0,000
 0,0

 Bestimmungsgrenze
 0,003
 0,1

0,025

0,04

# Komponente HF

| Datum      | Zeit        | Faktor GZ | GZ    | T GZ | p Luft | Probe | Analyse  | HF    | Proben-   |
|------------|-------------|-----------|-------|------|--------|-------|----------|-------|-----------|
|            |             |           | m³    | °C   | hPa    | m³N   | mg/Probe | mg/m³ | bezeichn. |
| 25.09.2024 | 11:07-11:37 | 0,994     | 0,056 | 14,5 | 945    | 0,049 | 0,000    | 0,0   | 1         |
| 25.09.2024 | 12:12-12:42 | 0,994     | 0,057 | 16,5 | 945    | 0,050 | 0,000    | 0,0   | 2         |
| 26.09.2024 | 11:25-11:55 | 0,994     | 0,061 | 16,0 | 937    | 0,053 | 0,000    | 0,0   | 3         |
| 26.09.2024 | 12:31-13:01 | 0,994     | 0,060 | 17,0 | 937    | 0,052 | 0,000    | 0,0   | 4         |
| 27.09.2024 | 09:28-09:58 | 0,994     | 0,058 | 12,5 | 939    | 0,051 | 0,000    | 0,0   | 5         |
| 27.09.2024 | 10:32-11:02 | 0,994     | 0,059 | 13,5 | 939    | 0,051 | 0,000    | 0,0   | 6         |
|            |             |           |       |      |        |       |          |       |           |

 Blindwert
 0,000
 0,0

 Bestimmungsgrenze
 0,003
 0,1

Tabelle 7.1.4. Mess- und Rechenwerte partikelförmige Messparameter.

### Komponente SM\_17BImSchV Cd ΤI Sb As Pb Cr Probe Nr Datum Zeit Probe 1 filtergängig filtergängig filtergängig filtergängig filtergängig filtergängig $m^3N$ µg/Probe µg/Probe µg/Probe µg/Probe µg/Probe μg/Probe 25.09.2024 17:19-17:49 0,567 0.0584 0.0000 0.0000 0.0000 2,9580 0,3260 2 26.09.2024 16:57-17:27 0,564 0,0000 0,0000 0,0000 0,0000 1,4580 0,0000 3 27.09.2024 07:56-08:26 0,630 0,0000 0,0000 0,0000 0,0000 1,0600 0,4040 BG 0,1360 0,1360 1,3620 1,3620 1,3620 1.3620 BW 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

ELR/MNR

**BW** Blindwert

### Komponente SM\_17BlmSchV

|          |            |             |         | Co           | Cu           | Mn           | Ni           | V            | Sn           |
|----------|------------|-------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig |
|          |            |             | m³N     | μg/Probe     | μg/Probe     | μg/Probe     | µg/Probe     | µg/Probe     | µg/Probe     |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | 0,0000       | 1,7940       | 1,0850       | 0,5500       | 0,0000       | 0,0000       |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | 0,0000       | 0,8680       | 0,5980       | 0,0000       | 0,0000       | 0,0000       |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | 0,0000       | 0,5530       | 0,8330       | 0,4880       | 0,0000       | 0,0000       |
|          |            | BG          |         | 1,3620       | 1,3620       | 1,3620       | 1,3620       | 1,3620       | 1,3620       |
|          |            | BW          |         | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

### Komponente SM\_17BImSchV

|          |            |             |         | Cd         |               | Sb         | As         | Pb         | Cr         |
|----------|------------|-------------|---------|------------|---------------|------------|------------|------------|------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | partikulär | TI partikulär | partikulär | partikulär | partikulär | partikulär |
|          |            |             | m³N     | μg/Probe   | μg/Probe      | μg/Probe   | µg/Probe   | µg/Probe   | μg/Probe   |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | 0,0000     | 0,0000        | 0,0000     | 0,0000     | 0,0000     | 0,0000     |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | 0,0000     | 0,0000        | 0,0000     | 0,0000     | 0,0000     | 0,0000     |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | 0,0000     | 0,0000        | 0,0000     | 0,0000     | 0,4070     | 0,0000     |
|          |            | BG          |         | 0,0250     | 0,0250        | 0,2500     | 0,2500     | 0,2500     | 0,2500     |
|          |            | BW          |         | 0,0000     | 0,0000        | 0,0000     | 0,0000     | 0,0000     | 0,0000     |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

### Komponente SM\_17BImSchV

|          |            |             |         | Co         | Cu         | Mn         |               |              | Sn         |
|----------|------------|-------------|---------|------------|------------|------------|---------------|--------------|------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | partikulär | partikulär | partikulär | Ni partikulär | V partikulär | partikulär |
|          |            |             | m³N     | μg/Probe   | µg/Probe   | μg/Probe   | μg/Probe      | μg/Probe     | µg/Probe   |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | 0,0000     | 0,0000     | 0,0000     | 0,0000        | 0,0000       | 0,0000     |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | 0,0000     | 0,0000     | 0,3620     | 0,0000        | 0,0000       | 0,0000     |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | 0,0000     | 0,0000     | 0,2820     | 0,0000        | 0,0000       | 0,0000     |
|          |            | BG          |         | 0,2500     | 0,2500     | 0,2500     | 0,2500        | 0,2500       | 0,2500     |
|          |            | BW          |         | 0,0000     | 0,0000     | 0,0000     | 0,0000        | 0,0000       | 0,0000     |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

### Komponente SM\_17BImSchV

|          |            |             |         | Cd           | TI           | Sb           | As           | Pb           | Cr           |
|----------|------------|-------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig |
|          |            |             | m³N     | µg/m³        | µg/m³        | µg/m³        | µg/m³        | µg/m³        | µg/m³        |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | <0,2410      | <0,2410      | <2,4138      | <2,4138      | 5,2164       | <2,4138      |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | <0,2410      | <0,2410      | <2,4138      | <2,4138      | 2,5839       | <2,4138      |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | <0,2410      | <0,2410      | <2,4138      | <2,4138      | <2,4138      | <2,4138      |
|          |            | BG          |         | 0,2410       | 0,2410       | 2,4138       | 2,4138       | 2,4138       | 2,4138       |
|          |            | BW          |         | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

# Komponente SM\_17BlmSchV

|          |            |             |         | Co           | Cu           | Mn           | Ni           | V            | Sn           |
|----------|------------|-------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig | filtergängig |
|          |            |             | m³N     | µg/m³        | µg/m³        | µg/m³        | µg/m³        | µg/m³        | µg/m³        |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | <2,4138      | 3,1637       | <2,4138      | <2,4138      | <2,4138      | <2,4138      |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | <2,4138      | <2,4138      | <2,4138      | <2,4138      | <2,4138      | <2,4138      |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | <2,4138      | <2,4138      | <2,4138      | <2,4138      | <2,4138      | <2,4138      |
|          |            | BG          |         | 2,4138       | 2,4138       | 2,4138       | 2,4138       | 2,4138       | 2,4138       |
|          |            | BW          |         | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       | 0,0000       |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

# Komponente SM\_17BImSchV

|          |            |             |         | Cd         |               | Sb         | As         | Pb         | Cr         |
|----------|------------|-------------|---------|------------|---------------|------------|------------|------------|------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | partikulär | TI partikulär | partikulär | partikulär | partikulär | partikulär |
|          |            |             | m³N     | µg/m³      | µg/m³         | µg/m³      | µg/m³      | µg/m³      | µg/m³      |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | <0,0443    | <0,0443       | <0,4431    | <0,4431    | <0,4431    | <0,4431    |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | <0,0443    | <0,0443       | <0,4431    | <0,4431    | <0,4431    | <0,4431    |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | <0,0443    | <0,0443       | <0,4431    | <0,4431    | 0,6465     | <0,4431    |
|          |            | BG          |         | 0,0443     | 0,0443        | 0,4431     | 0,4431     | 0,4431     | 0,4431     |
|          |            | BW          |         | 0,0000     | 0,0000        | 0,0000     | 0,0000     | 0,0000     | 0,0000     |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

### Komponente SM\_17BlmSchV

|          |            |             |         | Co         | Cu         | Mn         |               |              | Sn         |
|----------|------------|-------------|---------|------------|------------|------------|---------------|--------------|------------|
| Probe Nr | Datum      | Zeit        | Probe 1 | partikulär | partikulär | partikulär | Ni partikulär | V partikulär | partikulär |
|          |            |             | m³N     | µg/m³      | µg/m³      | µg/m³      | µg/m³         | µg/m³        | µg/m³      |
| 1        | 25.09.2024 | 17:19-17:49 | 0,567   | <0,4431    | <0,4431    | <0,4431    | <0,4431       | <0,4431      | <0,4431    |
| 2        | 26.09.2024 | 16:57-17:27 | 0,564   | <0,4431    | <0,4431    | 0,6415     | <0,4431       | <0,4431      | <0,4431    |
| 3        | 27.09.2024 | 07:56-08:26 | 0,630   | <0,4431    | <0,4431    | 0,4479     | <0,4431       | <0,4431      | <0,4431    |
|          |            | BG          |         | 0,4431     | 0,4431     | 0,4431     | 0,4431        | 0,4431       | 0,4431     |
|          |            | BW          |         | 0,0000     | 0,0000     | 0,0000     | 0,0000        | 0,0000       | 0,0000     |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

ELR/MNR

BW Blindwert

 Tabelle 7.1.5.
 Mess- und Rechenwerte besondere hochtoxische Messparameter.

### Komponente WHO-TEQ PCDD/F /B(a)P

| Probe Nr | Datum      | Zeit        | Probe 1 | PCDD/F   | B(a)P    | dl-PCB   |
|----------|------------|-------------|---------|----------|----------|----------|
|          |            |             | m³N     | ng/Probe | ng/Probe | ng/Probe |
| 1        | 25.09.2024 | 09:52-16:40 | 7,586   | 0,0003   | 0,00     | 0,0000   |
| 2        | 26.09.2024 | 11:28-16:03 | 5,706   | 0,0006   | 0,00     | 0,0000   |
| 3        | 27.09.2024 | 08:23-12:57 | 6,176   | 0,0002   | 0,00     | 0,0000   |
|          |            | BG          |         | 0,0063   | 10,00    | 0,0036   |
|          |            | BW          |         | 0,0000   | 0,00     | 0,0000   |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

BW Blindwert

### Komponente WHO-TEQ PCDD/F /B(a)P

| Probe Nr | Datum      | Zeit        | Probe 1 | PCDD/F  | B(a)P   | dl-PCB  |
|----------|------------|-------------|---------|---------|---------|---------|
|          |            |             | m³N     | ng/m³   | ng/m³   | ng/m³   |
| 1        | 25.09.2024 | 09:52-16:40 | 7,586   | <0,0011 | <1,7526 | <0,0006 |
| 2        | 26.09.2024 | 11:28-16:03 | 5,706   | <0,0011 | <1,7526 | <0,0006 |
| 3        | 27.09.2024 | 08:23-12:57 | 6,176   | <0,0011 | <1,7526 | <0,0006 |
|          |            | BG          |         | 0,0011  | 1,7526  | 0,0006  |
|          |            | BW          |         | 0,0000  | 0,0000  | 0,0000  |

Werte kleiner Bestimmungsgrenze (BG) mit 0% der BG berücksichtigt

BG Bestimmungsgrenze

ELR/MNR

BW Blindwert

02 [Vol%] 25,00 30,00 ₹7.9.24 14:00 00:11 42.9.72 Konzentrationsverlauf 25.9.2024 - 27.9.2024 27.9.24 8:00 27.9.24 5:00 27.9.24 2:00 26.9.24 23:00 26.9.24 20:00 26.9.24 17:00 26.9.24 14:00 00:11 42.6.92 26.9.24 8:00 26.9.24 5:00 26.9.24 2:00 25.9.24 23:00 25.9.24 20:00 25.9.24 17:00 25.9.24 14:00 25.9.24 11:00 25.9.24 8:00 300 120 100 20 250 N20 [mg/m<sup>3</sup>]

Anlage 2: Graphische Darstellung des Verlaufs kontinuierlich gemessener Komponenten

Abbildung 7.2.1. Graphischer Verlauf.

Anlage 3: Prüfmittelkatalog

|                | Prüfmittel- |              |            | letzte      | Prüf-     |                                                                                                                                                                  |
|----------------|-------------|--------------|------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Messkomponente | Ä.          | Hersteller   | Тур        | Überprüfung | intervall | Eignungsbekanntgabe / Prüfbericht                                                                                                                                |
| _              | 8909        | Greisinger   | GMH3251    | 06. 2024    | 12 Monate |                                                                                                                                                                  |
| pdyn, pstat    | 12444       | Greisinger   | GMH 3156   | 06. 2024    | 12 Monate |                                                                                                                                                                  |
| patm           | 13157       | Greisinger   | GMH3181-12 | 09. 2024    | 12 Monate |                                                                                                                                                                  |
| H20            | 7296        | Sartorius    | LC4200     | 08. 2024    | 12 Monate |                                                                                                                                                                  |
| SIS            | 8038        | Kromschröder | BK-G4      | 05. 2024    | 12 Monate |                                                                                                                                                                  |
| PCDDF          | 9831        | Müller-BBM   | Iso1.1     | 07. 2025    | 12 Monate |                                                                                                                                                                  |
| H20            | 10899       | ltron        | G1,6       | 10. 2023    | 12 Monate |                                                                                                                                                                  |
| Нg             | 10234       | ltron        | G1,6       | 07. 2024    | 12 Monate |                                                                                                                                                                  |
| 生              | 10951       | ltron        | G1,6       | 02. 2024    | 12 Monate |                                                                                                                                                                  |
| NZO            | 6962        | ABB          | EL3020     | 02. 2024    | 12 Monate | BAnz. 2006, Nr. 194, S. 6715 vom 12.09.2006;TÜV Süddeutschland,                                                                                                  |
| 02, C02        | 12486       | Horiba       | PG-350EDR  | 01. 2024    | 12 Monate | Berichtsnummer 691317, 30.06.2006<br>BAnz. AT 2013, Heft B10, S. 7;BAnz. AT 2017, Heft B12, S. 13;TÜV<br>Rheinland, Berichtsnummer 936/21217617/A vom 05.10.2012 |

# //S-MUC-FS01/ALLEFIRMEN/M\PROJ/175/M175121/M175121\_05\_BER\_1D.DOCX:12. 12. 2024

### Anlage 4: Einzelergebnisse PCDD/F, dl-PCB und B(a)p

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 1 von 18



Auftraggeber: Müller-BBM Industry Solutions GmbH

Niederlassung Nürnberg

Fürther Str. 35

90513 Zirndorf

0911 600445-0 0911 600445-11

E-Mail: <u>frank.ellner-schuberth@mbbm-ind.com</u>

Auftrag / Projekt: M 175 121 / B02

mas-Ansprechpartner:

Stefanie Görkes

Wilhelm-Schickard-Straße 5

48149 Münster

+49 (0) 251 384415-11 +49 (0) 251 384415-01 E-Mail: s.goerkes@mas-tp.com

mas-Auftrag: 24-2598

Prüfung: Analyse von Abgasproben auf polychlorierte Dibenzo(p)dioxine (PCDD) und

polychlorierte Dibenzofurane (PCDF), auf polychlorierte Biphenyle (hier:

WHO-PCB) sowie auf Benzo[a]pyren (B[a]P)

### Prüfgegenstand:

| Probenbezeichnung Auftraggeber | Probenart           | Proben-Ansicht              | mas-Probennummer |
|--------------------------------|---------------------|-----------------------------|------------------|
| M175121 - 1                    | Abgasprobe          | 2 Kartuschen +<br>Kondensat | 24-2598-001      |
| M175121 - 2                    | Abgasprobe          | 2 Kartuschen +<br>Kondensat | 24-2598-002      |
| M175121 - 3                    | Abgasprobe          | 2 Kartuschen +<br>Kondensat | 24-2598-003      |
| M175121 - BW                   | Blindprobe<br>Abgas | 2 Kartuschen +<br>Kondensat | 24-2598-004      |

Probeneingang: 04.10.2024

Probenahme: Die Proben wurden der mas gmbh vom Auftraggeber zugesandt.

Prüfbeginn: 07.10.2024 Prüfende: 21.10.2024

Prüfverfahren: D/F:DIN EN 1948, Blatt 2/3:2006-06 in Verbindung mit MAS\_PA031:2020-11.

PCB:DIN EN 1948, Blatt 4:2014-03 in Verbindung mit MAS\_PA031:2020-11.

B[a]P:VDI 3874:2006-12 in Verbindung mit MAS\_PA046:2013-09. Die wichtigsten Analysenschritte lassen sich wie folgt zusammenfassen:

### **Probenvorbereitung und Extraktion**



Hinweise: Die Prüfergebnisse beziehen sich ausschließlich auf die hier analysierten Proben. Der vorliegende Prüfbericht darf ohne schriftliche

Zustimmung der mas gmbh nicht auszugsweise vervielfältigt werden.

Prüfbericht Nr. 1301 24-2598 P01
Datum: 2024-10-22 • Seite: 2 von 18



- HCl-Aufschluß des Filters, Filtration des Kondensats, Trocknung des Filterrückstandes und des XAD-Harzes
- Zugabe von <sup>13</sup>C<sub>12</sub>-markierten PCDD/F- und PCB-Quantifizierungsstandards
- Soxhlet-Extraktion der Kompartimente mit Toluol/Aceton
- Teilung des Gesamtextraktes zur Analyse auf die verschiedenen Parameter

### PCDD/F- und PCB-Analyse

- mehrstufiges Extrakt clean-up
- Zugabe von  ${}^{13}\mathrm{C}_{12}$ -markierten PCDD/F- und PCB-Wiederfindungsstandards
- getrennte GC/HRMS Analyse auf PCDD/F und PCB
- Quantifizierung über die internen Standards

### B[a]P-Analyse

- Zugabe von deuteriertem Benzo[a]pyren als internen Standard zu einem Aliquot des Extraktes
- säulenchromatographisches clean-up des Extraktes
- Zugabe des D<sub>12</sub>-markierten Perylens als Wiederfindungsstandard
- HRGC/LRMS-Analyse
- Quantifizierung über die internen deuterierten Standards

### Bemerkungen:

Die Prüfergebnisse sind den nachfolgenden Tabellen zu entnehmen. Die Angaben wurden jeweils auf die Gesamtprobe bezogen.

Die Toxizitätsäquivalent-Faktoren (TE-Faktoren) nach NATO/CCMS (I-TEF) und WHO (WHO-TEF), sowie Angaben zur Messunsicherheit der analytischen Bestimmung für die hier untersuchten Parameter, sind im Anhang aufgeführt.

### Kommentare:

Eine Einordnung oder Bewertung der Analysenergebnisse bleibt dem Auftraggeber vorbehalten.

### Münster, den 22.10.2024

Dieser Prüfbericht wurde von Dr. Peter Luthardt freigegeben. Der Prüfbericht ist auch ohne Unterschrift gültig.



Hinweise: Die Prüfergebnisse beziehen sich ausschließlich auf die hier analysierten Proben. Der vorliegende Prüfbericht darf ohne

analysierten Proben. Der vorliegende Prüfbericht darf ohne schriftliche Zustimmung der mas gmbh nicht auszugsweise vervielfältigt werden.

Datum: 2024-10-22 • Seite: 3 von 18



Tab. 01: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber                                  |                      | M175121 - 1               |              |                                    |
|-----------------------------------------------------------------|----------------------|---------------------------|--------------|------------------------------------|
| Probenart<br>mas-Probennummer                                   |                      | Abgasprobe<br>24-2598-001 |              |                                    |
| Parameter                                                       | Einheit              | Messwert                  | BestGrenze * | Prüfverfahren                      |
| PCDD 2378-Kongenere                                             |                      |                           |              |                                    |
| 2378-TetraCDD                                                   | ng/Probe             | nd                        | 0,00100      | DIN EN 1948, 2/                    |
| 12378-PentaCDD                                                  | ng/Probe             | nd                        | 0,00200      | DIN EN 1948, 2/                    |
| 123478-HexaCDD                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 123678-HexaCDD                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 123789-HexaCDD                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 1234678-HeptaCDD                                                | ng/Probe             | 0,0156                    | 0,0150       | DIN EN 1948, 2/                    |
| 12346789-OctaCDD                                                | ng/Probe             | nd                        | 0,0450       | DIN EN 1948, 2/                    |
| PCDF 2378-Kongenere                                             |                      |                           |              |                                    |
| 2378-TetraCDF                                                   | ng/Probe             | 0,00158                   | 0,00100      | DIN EN 1948, 2/                    |
| 12378-PentaCDF                                                  | ng/Probe             | nd                        | 0,00200      | DIN EN 1948, 2/                    |
| 23478-PentaCDF                                                  | ng/Probe             | nd                        | 0,00200      | DIN EN 1948, 2/                    |
| 123478-HexaCDF                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 123678-HexaCDF                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 123789-HexaCDF                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 234678-HexaCDF                                                  | ng/Probe             | nd                        | 0,00300      | DIN EN 1948, 2/                    |
| 1234678-HeptaCDF                                                | ng/Probe             | nd                        | 0,0150       | DIN EN 1948, 2/                    |
| 1234789-HeptaCDF                                                | ng/Probe             | nd                        | 0,0150       | DIN EN 1948, 2/                    |
| 12346789-OctaCDF                                                | ng/Probe             | nd                        | 0,0450       | DIN EN 1948, 2/                    |
| PCDD Summen                                                     |                      |                           |              |                                    |
| Summe TetraCDD                                                  | ng/Probe             | 0,0117                    |              | DIN EN 1948, 2/                    |
| Summe PentaCDD                                                  | ng/Probe             | 0,0168                    |              | DIN EN 1948, 2/                    |
| Summe HexaCDD                                                   | ng/Probe             | 0,0297                    |              | DIN EN 1948, 2/                    |
| Summe HeptaCDD                                                  | ng/Probe             | 0,0390                    |              | DIN EN 1948, 2/                    |
| OctaCDD                                                         | ng/Probe             | nd                        | 0,0450       | DIN EN 1948, 2/                    |
| PCDF Summen                                                     |                      |                           |              |                                    |
| Summe TetraCDF                                                  | ng/Probe             | 0,0320                    |              | DIN EN 1948, 2/                    |
| Summe PentaCDF                                                  | ng/Probe             | 0,0161                    |              | DIN EN 1948, 2/                    |
| Summe HexaCDF                                                   | ng/Probe             | 0,00331                   |              | DIN EN 1948, 2/                    |
| Summe HeptaCDF                                                  | ng/Probe             | nb                        |              | DIN EN 1948, 2/                    |
| OctaCDF                                                         | ng/Probe             | nd                        | 0,0450       | DIN EN 1948, 2/                    |
| PCDD/F Summen                                                   | <b>31</b>            |                           | -,           |                                    |
| Summe Tetra- bis OctaCDDa                                       | ng/Probe             | 0,0973                    |              | DIN EN 1948, 2/                    |
| Summe Tetra- bis OctaCDFa                                       | ng/Probe             | 0,0514                    |              | DIN EN 1948, 2/                    |
| Summe Tetra- bis OctaCDD/Fa                                     | ng/Probe             | 0,149                     |              | DIN EN 1948, 2/                    |
| PCDD/F-TEQ-Werte                                                | 9,                   | 3/2 15                    |              | 21.1 2.1 23 10, 2,                 |
| I-TEQ exklusive BG <sup>a</sup>                                 | ng/Probe             | 0,000314                  |              | DIN EN 1948, 2/                    |
| I-TEQ exklusive BG <sup>a</sup> I-TEO inklusive BG <sup>b</sup> | ng/Probe<br>ng/Probe | 0,000314<br>0,00590       | 0.00584      | DIN EN 1948, 2/<br>DIN EN 1948, 2/ |
| WHO-PCDD/F-TEQ 2005 exkl. BG <sup>a</sup>                       | ng/Probe<br>ng/Probe | 0,00390                   | 0,00364      | DIN EN 1948, 2/<br>DIN EN 1948, 2/ |
| WHO-PCDD/F-TEQ 2003 exkl. BG <sup>b</sup>                       | ng/Probe             | 0,000314                  | 0,00634      | DIN EN 1948, 2/                    |
| Wiederfindung Probenahmestandar                                 |                      | 0,00040                   | 0,00034      | DIN LIN 1340, Z/                   |
| WF-12378-PentaCDF-PS                                            | <b>"</b>             | 91                        |              | DIN EN 1049 37                     |
| WF-12378-PentaCDF-PS WF-123789-HexaCDF-PS                       | %                    | 91<br>102                 |              | DIN EN 1948, 2/2                   |
|                                                                 | %                    | 102<br>109                |              |                                    |
| WF-1234789-HeptaCDF-PS                                          | %                    | 103                       |              | DIN EN 1948, 2/                    |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 4 von 18



Tab. 02: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - 1               |              |                |
|--------------------------------|----------|---------------------------|--------------|----------------|
| Probenart<br>mas-Probennummer  |          | Abgasprobe<br>24-2598-001 |              |                |
| Parameter                      | Einheit  | Messwert                  | BestGrenze * | Prüfverfahren  |
| Non-ortho WHO-PCB              |          |                           |              |                |
| PCB 77                         | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 81                         | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| PCB 126                        | ng/Probe | nd                        | 0,0200       | DIN EN 1948, 4 |
| PCB 169                        | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| Mono-ortho WHO-PCB             |          |                           |              |                |
| PCB 105                        | ng/Probe | nd                        | 0,500        | DIN EN 1948, 4 |
| PCB 114                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 118                        | ng/Probe | nd                        | 1,00         | DIN EN 1948, 4 |
| PCB 123                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 156                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 157                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 167                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 189                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| WHO-PCB-TEQ-Werte              |          |                           |              |                |
| WHO-PCB-TEQ 2005 exkl. BGa     | ng/Probe | nb                        |              | DIN EN 1948, 4 |
| WHO-PCB-TEQ 2005 inkl. BGb     | ng/Probe | 0,00359                   | 0,00359      | DIN EN 1948, 4 |
| Wiederfindung Probenahmestanda | rd       |                           |              |                |
| WF PCB 60                      | %        | 91                        |              | DIN EN 1948, 4 |
| WF PCB 127                     | %        | 109                       |              | DIN EN 1948, 4 |
| WF PCB 159                     | %        | 87                        |              | DIN EN 1948, 4 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 24-2598 P01

Datum: 2024-10-22 • Seite: 5 von 18



# Tab. 03: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - 1               |              |               |
|--------------------------------|----------|---------------------------|--------------|---------------|
| Probenart<br>mas-Probennummer  |          | Abgasprobe<br>24-2598-001 |              |               |
| Parameter                      | Einheit  | Messwert                  | BestGrenze * | Prüfverfahren |
| PAK Komponenten                |          |                           |              |               |
| Benzo[a]pyren                  | μg/Probe | nd                        | 0,0100       | VDI 3874      |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 6 von 18



Tab. 04: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber                           |           | M175121 - 2 |              |                  |
|----------------------------------------------------------|-----------|-------------|--------------|------------------|
| Probenart                                                |           | Abgasprobe  |              |                  |
| mas-Probennummer                                         |           | 24-2598-002 |              |                  |
| Parameter                                                | Einheit   | Messwert    | BestGrenze * | Prüfverfahren    |
| PCDD 2378-Kongenere                                      |           |             |              |                  |
| 2378-TetraCDD                                            | ng/Probe  | nd          | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDD                                           | ng/Probe  | nd          | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDD                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDD                                           | ng/Probe  | 0,00303     | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDD                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 1234678-HeptaCDD                                         | ng/Probe  | nd          | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDD                                         | ng/Probe  | nd          | 0,0450       | DIN EN 1948, 2/3 |
| PCDF 2378-Kongenere                                      |           |             |              |                  |
| 2378-TetraCDF                                            | ng/Probe  | 0,00264     | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDF                                           | ng/Probe  | nd          | 0,00200      | DIN EN 1948, 2/3 |
| 23478-PentaCDF                                           | ng/Probe  | nd          | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDF                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDF                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDF                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 234678-HexaCDF                                           | ng/Probe  | nd          | 0,00300      | DIN EN 1948, 2/3 |
| 1234678-HeptaCDF                                         | ng/Probe  | nd          | 0,0150       | DIN EN 1948, 2/3 |
| 1234789-HeptaCDF                                         | ng/Probe  | nd          | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDF                                         | ng/Probe  | nd          | 0,0450       | DIN EN 1948, 2/3 |
| PCDD Summen                                              |           |             |              |                  |
| Summe TetraCDD                                           | ng/Probe  | 0,0164      |              | DIN EN 1948, 2/3 |
| Summe PentaCDD                                           | ng/Probe  | 0,0198      |              | DIN EN 1948, 2/3 |
| Summe HexaCDD                                            | ng/Probe  | 0,0361      |              | DIN EN 1948, 2/3 |
| Summe HeptaCDD                                           | ng/Probe  | 0,0206      |              | DIN EN 1948, 2/3 |
| OctaCDD                                                  | ng/Probe  | nd          | 0,0450       | DIN EN 1948, 2/3 |
| PCDF Summen                                              |           |             |              |                  |
| Summe TetraCDF                                           | ng/Probe  | 0,0426      |              | DIN EN 1948, 2/3 |
| Summe PentaCDF                                           | ng/Probe  | 0,0192      |              | DIN EN 1948, 2/3 |
| Summe HexaCDF                                            | ng/Probe  | 0,00422     |              | DIN EN 1948, 2/3 |
| Summe HeptaCDF                                           | ng/Probe  | nb          |              | DIN EN 1948, 2/3 |
| OctaCDF                                                  | ng/Probe  | nd          | 0,0450       | DIN EN 1948, 2/3 |
| PCDD/F Summen                                            |           |             | -,           |                  |
| Summe Tetra- bis OctaCDDa                                | ng/Probe  | 0,0929      |              | DIN EN 1948, 2/3 |
| Summe Tetra- bis OctaCDFa                                | ng/Probe  | 0,0660      |              | DIN EN 1948, 2/3 |
| Summe Tetra - bis OctaCDI - Summe Tetra - bis OctaCDD/Fa | ng/Probe  | 0,159       |              | DIN EN 1948, 2/3 |
| PCDD/F-TEQ-Werte                                         | rig/110bc | 0,133       |              | DIN EN 1540, 27  |
| • •                                                      | /D l      | 0.000566    |              | DIN EN 4040 0/2  |
| I-TEQ exklusive BG <sup>a</sup>                          | ng/Probe  | 0,000566    | 0.00504      | DIN EN 1948, 2/3 |
| I-TEQ inklusive BG <sup>b</sup>                          | ng/Probe  | 0,00601     | 0,00584      | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 exkl. BG <sup>a</sup>                | ng/Probe  | 0,000566    | 0.00634      | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 inkl. BGb                            | ng/Probe  | 0,00650     | 0,00634      | DIN EN 1948, 2/3 |
| Wiederfindung Probenahmestandard                         |           |             |              |                  |
| WF-12378-PentaCDF-PS                                     | %         | 95          |              | DIN EN 1948, 2/3 |
| WF-123789-HexaCDF-PS                                     | %         | 96          |              | DIN EN 1948, 2/3 |
| WF-1234789-HeptaCDF-PS                                   | %         | 97          |              | DIN EN 1948, 2/3 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 7 von 18



Tab. 05: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - 2               |              |                |
|--------------------------------|----------|---------------------------|--------------|----------------|
| Probenart<br>mas-Probennummer  |          | Abgasprobe<br>24-2598-002 |              |                |
| Parameter                      | Einheit  | Messwert                  | BestGrenze * | Prüfverfahren  |
| Non-ortho WHO-PCB              |          |                           |              |                |
| PCB 77                         | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 81                         | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| PCB 126                        | ng/Probe | nd                        | 0,0200       | DIN EN 1948, 4 |
| PCB 169                        | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| Mono-ortho WHO-PCB             |          |                           |              |                |
| PCB 105                        | ng/Probe | nd                        | 0,500        | DIN EN 1948, 4 |
| PCB 114                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 118                        | ng/Probe | nd                        | 1,00         | DIN EN 1948, 4 |
| PCB 123                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 156                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 157                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 167                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 189                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| WHO-PCB-TEQ-Werte              |          |                           |              |                |
| WHO-PCB-TEQ 2005 exkl. BGa     | ng/Probe | nb                        |              | DIN EN 1948, 4 |
| WHO-PCB-TEQ 2005 inkl. BGb     | ng/Probe | 0,00359                   | 0,00359      | DIN EN 1948, 4 |
| Wiederfindung Probenahmestanda | rd       |                           |              |                |
| WF PCB 60                      | %        | 91                        |              | DIN EN 1948, 4 |
| WF PCB 127                     | %        | 100                       |              | DIN EN 1948, 4 |
| WF PCB 159                     | %        | 90                        |              | DIN EN 1948, 4 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 24-2598 P01

Datum: 2024-10-22 • Seite: 8 von 18



# Tab. 06: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | <b>M175121 - 2</b> Abgasprobe |              |               |
|--------------------------------|----------|-------------------------------|--------------|---------------|
| mas-Probennummer               |          | 24-2598-002                   |              |               |
| Parameter                      | Einheit  | Messwert                      | BestGrenze * | Prüfverfahren |
| PAK Komponenten                |          |                               |              |               |
| Benzo[a]pyren                  | μg/Probe | nd                            | 0,0100       | VDI 3874      |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 9 von 18



Tab. 07: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber            |           | M175121 - 3               |              |                  |
|-------------------------------------------|-----------|---------------------------|--------------|------------------|
| Probenart<br>mas-Probennummer             |           | Abgasprobe<br>24-2598-003 |              |                  |
| Parameter                                 | Einheit   | Messwert                  | BestGrenze * | Prüfverfahren    |
| PCDD 2378-Kongenere                       |           |                           |              |                  |
| 2378-TetraCDD                             | ng/Probe  | nd                        | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDD                            | ng/Probe  | nd                        | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDD                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDD                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDD                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/  |
| 1234678-HeptaCDD                          | ng/Probe  | nd                        | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDD                          | ng/Probe  | nd                        | 0,0450       | DIN EN 1948, 2/3 |
| PCDF 2378-Kongenere                       | <i>5.</i> |                           | •            |                  |
| 2378-TetraCDF                             | ng/Probe  | 0,00189                   | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDF                            | ng/Probe  | nd                        | 0,00200      | DIN EN 1948, 2/3 |
| 23478-PentaCDF                            | ng/Probe  | nd                        | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDF                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDF                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDF                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 234678-HexaCDF                            | ng/Probe  | nd                        | 0,00300      | DIN EN 1948, 2/3 |
| 1234678-HeptaCDF                          | ng/Probe  | nd                        | 0,0150       | DIN EN 1948, 2/3 |
| 1234789-HeptaCDF                          | ng/Probe  | nd                        | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDF                          | ng/Probe  | nd                        | 0,0450       | DIN EN 1948, 2/3 |
| PCDD Summen                               |           |                           |              |                  |
| Summe TetraCDD                            | ng/Probe  | 0,0102                    |              | DIN EN 1948, 2/3 |
| Summe PentaCDD                            | ng/Probe  | 0,0147                    |              | DIN EN 1948, 2/3 |
| Summe HexaCDD                             | ng/Probe  | 0,0255                    |              | DIN EN 1948, 2/3 |
| Summe HeptaCDD                            | ng/Probe  | 0,0162                    |              | DIN EN 1948, 2/3 |
| OctaCDD                                   | ng/Probe  | nd                        | 0,0450       | DIN EN 1948, 2/3 |
| PCDF Summen                               |           |                           |              |                  |
| Summe TetraCDF                            | ng/Probe  | 0,0274                    |              | DIN EN 1948, 2/3 |
| Summe PentaCDF                            | ng/Probe  | 0,00876                   |              | DIN EN 1948, 2/3 |
| Summe HexaCDF                             | ng/Probe  | nb                        |              | DIN EN 1948, 2/3 |
| Summe HeptaCDF                            | ng/Probe  | nb                        |              | DIN EN 1948, 2/3 |
| OctaCDF                                   | ng/Probe  | nd                        | 0,0450       | DIN EN 1948, 2/3 |
| PCDD/F Summen                             |           |                           |              |                  |
| Summe Tetra- bis OctaCDDa                 | ng/Probe  | 0,0666                    |              | DIN EN 1948, 2/3 |
| Summe Tetra- bis OctaCDFa                 | ng/Probe  | 0,0362                    |              | DIN EN 1948, 2/3 |
| Summe Tetra- bis OctaCDD/Fa               | ng/Probe  | 0,103                     |              | DIN EN 1948, 2/3 |
| PCDD/F-TEQ-Werte                          |           |                           |              |                  |
| I-TEQ exklusive BG <sup>a</sup>           | ng/Probe  | 0,000189                  |              | DIN EN 1948, 2/3 |
| I-TEQ inklusive BG <sup>b</sup>           | ng/Probe  | 0,00593                   | 0,00584      | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 exkl. BG <sup>a</sup> | ng/Probe  | 0,000189                  | •            | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 inkl. BGb             | ng/Probe  | 0,00643                   | 0,00634      | DIN EN 1948, 2/3 |
| Wiederfindung Probenahmestandard          | i         |                           |              |                  |
| WF-12378-PentaCDF-PS                      | %         | 98                        |              | DIN EN 1948, 2/3 |
| WF-123789-HexaCDF-PS                      | %         | 94                        |              | DIN EN 1948, 2/3 |
| WF-1234789-HeptaCDF-PS                    | %         | 100                       |              | DIN EN 1948, 2/3 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 10 von 18



Tab. 08: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - 3               |              |                |
|--------------------------------|----------|---------------------------|--------------|----------------|
| Probenart<br>mas-Probennummer  |          | Abgasprobe<br>24-2598-003 |              |                |
| Parameter                      | Einheit  | Messwert                  | BestGrenze * | Prüfverfahren  |
| Non-ortho WHO-PCB              |          |                           |              |                |
| PCB 77                         | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 81                         | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| PCB 126                        | ng/Probe | nd                        | 0,0200       | DIN EN 1948, 4 |
| PCB 169                        | ng/Probe | nd                        | 0,0500       | DIN EN 1948, 4 |
| Mono-ortho WHO-PCB             |          |                           |              |                |
| PCB 105                        | ng/Probe | nd                        | 0,500        | DIN EN 1948, 4 |
| PCB 114                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 118                        | ng/Probe | nd                        | 1,00         | DIN EN 1948, 4 |
| PCB 123                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 156                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 157                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 167                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| PCB 189                        | ng/Probe | nd                        | 0,100        | DIN EN 1948, 4 |
| WHO-PCB-TEQ-Werte              |          |                           |              |                |
| WHO-PCB-TEQ 2005 exkl. BGa     | ng/Probe | nb                        |              | DIN EN 1948, 4 |
| WHO-PCB-TEQ 2005 inkl. BGb     | ng/Probe | 0,00359                   | 0,00359      | DIN EN 1948, 4 |
| Wiederfindung Probenahmestanda | ırd      |                           |              |                |
| WF PCB 60                      | %        | 93                        |              | DIN EN 1948, 4 |
| WF PCB 127                     | %        | 100                       |              | DIN EN 1948, 4 |
| WF PCB 159                     | %        | 86                        |              | DIN EN 1948, 4 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 24-2598 P01

Datum: 2024-10-22 • Seite: 11 von 18



# Tab. 09: Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - 3               |              |               |
|--------------------------------|----------|---------------------------|--------------|---------------|
| Probenart<br>mas-Probennummer  |          | Abgasprobe<br>24-2598-003 |              |               |
| Parameter                      | Einheit  | Messwert                  | BestGrenze * | Prüfverfahren |
| PAK Komponenten                |          |                           |              |               |
| Benzo[a]pyren                  | μg/Probe | nd                        | 0,0100       | VDI 3874      |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

ELR/MNR

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 12 von 18



Tab. 10: Ergebnisse der Analyse einer Emissionsprobe auf PCDD/F; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber            |          | M175121 - BW                    |              |                  |
|-------------------------------------------|----------|---------------------------------|--------------|------------------|
| Probenart<br>mas-Probennummer             |          | Blindprobe Abgas<br>24-2598-004 |              |                  |
| Parameter                                 | Einheit  | Messwert                        | BestGrenze * | Prüfverfahren    |
| PCDD 2378-Kongenere                       |          |                                 |              |                  |
| 2378-TetraCDD                             | ng/Probe | nd                              | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDD                            | ng/Probe | nd                              | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDD                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDD                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDD                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 1234678-HeptaCDD                          | ng/Probe | nd                              | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDD                          | ng/Probe | nd                              | 0,0450       | DIN EN 1948, 2/3 |
| PCDF 2378-Kongenere                       |          |                                 |              |                  |
| 2378-TetraCDF                             | ng/Probe | nd                              | 0,00100      | DIN EN 1948, 2/3 |
| 12378-PentaCDF                            | ng/Probe | nd                              | 0,00200      | DIN EN 1948, 2/3 |
| 23478-PentaCDF                            | ng/Probe | nd                              | 0,00200      | DIN EN 1948, 2/3 |
| 123478-HexaCDF                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 123678-HexaCDF                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 123789-HexaCDF                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 234678-HexaCDF                            | ng/Probe | nd                              | 0,00300      | DIN EN 1948, 2/3 |
| 1234678-HeptaCDF                          | ng/Probe | nd                              | 0,0150       | DIN EN 1948, 2/3 |
| 1234789-HeptaCDF                          | ng/Probe | nd                              | 0,0150       | DIN EN 1948, 2/3 |
| 12346789-OctaCDF                          | ng/Probe | nd                              | 0,0450       | DIN EN 1948, 2/3 |
| PCDD Summen                               |          |                                 |              |                  |
| Summe TetraCDD                            | ng/Probe | 0,00221                         |              | DIN EN 1948, 2/3 |
| Summe PentaCDD                            | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| Summe HexaCDD                             | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| Summe HeptaCDD                            | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| OctaCDD                                   | ng/Probe | nd                              | 0,0450       | DIN EN 1948, 2/3 |
| PCDF Summen                               |          |                                 |              |                  |
| Summe TetraCDF                            | ng/Probe | 0,00556                         |              | DIN EN 1948, 2/3 |
| Summe PentaCDF                            | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| Summe HexaCDF                             | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| Summe HeptaCDF                            | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| OctaCDF                                   | ng/Probe | nd                              | 0,0450       | DIN EN 1948, 2/3 |
| PCDD/F Summen                             |          |                                 |              |                  |
| Summe Tetra- bis OctaCDDa                 | ng/Probe | 0,00221                         |              | DIN EN 1948, 2/3 |
| Summe Tetra- bis OctaCDFa                 | ng/Probe | 0,00556                         |              | DIN EN 1948, 2/3 |
| Summe Tetra- bis OctaCDD/Fa               | ng/Probe | 0,00777                         |              | DIN EN 1948, 2/3 |
| PCDD/F-TEQ-Werte                          |          |                                 |              |                  |
| I-TEQ exklusive BG <sup>a</sup>           | ng/Probe | nb                              |              | DIN EN 1948, 2/3 |
| I-TEQ inklusive BG <sup>b</sup>           | ng/Probe | 0,00584                         | 0,00584      | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 exkl. BG <sup>a</sup> | ng/Probe | nb                              | ,            | DIN EN 1948, 2/3 |
| WHO-PCDD/F-TEQ 2005 inkl. BGb             | ng/Probe | 0,00634                         | 0,00634      | DIN EN 1948, 2/3 |
| Wiederfindung Probenahmestandard          | d        | -                               | •            | , ,              |
| WF-12378-PentaCDF-PS                      | %        | 86                              |              | DIN EN 1948, 2/3 |
| WF-123789-HexaCDF-PS                      | %        | 96                              |              | DIN EN 1948, 2/3 |
| WF-1234789-HeptaCDF-PS                    | %        | 98                              |              | DIN EN 1948, 2/3 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Datum: 2024-10-22 • Seite: 13 von 18



Tab. 11: Ergebnisse der Analyse einer Abgasprobe auf PCB; Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber  |          | M175121 - BW                    |              |                |
|---------------------------------|----------|---------------------------------|--------------|----------------|
| Probenart<br>mas-Probennummer   |          | Blindprobe Abgas<br>24-2598-004 |              |                |
| Parameter                       | Einheit  | Messwert                        | BestGrenze * | Prüfverfahren  |
| Non-ortho WHO-PCB               |          |                                 |              |                |
| PCB 77                          | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 81                          | ng/Probe | nd                              | 0,0500       | DIN EN 1948, 4 |
| PCB 126                         | ng/Probe | nd                              | 0,0200       | DIN EN 1948, 4 |
| PCB 169                         | ng/Probe | nd                              | 0,0500       | DIN EN 1948, 4 |
| Mono-ortho WHO-PCB              |          |                                 |              |                |
| PCB 105                         | ng/Probe | nd                              | 0,500        | DIN EN 1948, 4 |
| PCB 114                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 118                         | ng/Probe | nd                              | 1,00         | DIN EN 1948, 4 |
| PCB 123                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 156                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 157                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 167                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| PCB 189                         | ng/Probe | nd                              | 0,100        | DIN EN 1948, 4 |
| WHO-PCB-TEQ-Werte               |          |                                 |              |                |
| WHO-PCB-TEQ 2005 exkl. BGa      | ng/Probe | nb                              |              | DIN EN 1948, 4 |
| WHO-PCB-TEQ 2005 inkl. BGb      | ng/Probe | 0,00359                         | 0,00359      | DIN EN 1948, 4 |
| Wiederfindung Probenahmestandar | ď        |                                 |              |                |
| WF PCB 60                       | %        | 90                              |              | DIN EN 1948, 4 |
| WF PCB 127                      | %        | 98                              |              | DIN EN 1948, 4 |
| WF PCB 159                      | %        | 85                              |              | DIN EN 1948, 4 |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

Prüfbericht Nr. 1301 24-2598 P01

Datum: 2024-10-22 • Seite: 14 von 18



### Ergebnisse der Analyse einer Emissionsprobe auf Benzo[a]pyren; Tab. 12: Angaben bezogen auf die Gesamtprobe

| Probenbezeichnung Auftraggeber |          | M175121 - BW                    |              |               |
|--------------------------------|----------|---------------------------------|--------------|---------------|
| Probenart<br>mas-Probennummer  |          | Blindprobe Abgas<br>24-2598-004 |              |               |
| Parameter                      | Einheit  | Messwert                        | BestGrenze * | Prüfverfahren |
| PAK Komponenten                |          |                                 |              |               |
| Benzo[a]pyren                  | μg/Probe | nd                              | 0,0100       | VDI 3874      |

Die Erläuterungen zu den Indizes entnehmen sie bitte der Legende im Anschluss an die Ergebnistabellen.

ELR/MNR

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 15 von 18



### Legende

- Die Nachweisgrenzen sind in der Regel jeweils um Faktor 3 niedriger als die angegebenen Bestimmungsgrenzen
- nd
- nicht detektiert oberhalb der angegebenen Bestimmungsgrenze (BG) Wert nicht berechnet, da keines der Kongenere oberhalb der Bestimmungsgrenze (BG) lag nb
- Summen- oder TEQ-Wert berechnet unter Einbezug nur der quantifizierten Kongenere (Konzentrationsuntergrenze)
- Summen- oder TEQ-Wert berechnet unter Einbezug der vollen Bestimmungsgrenze (BG) für nicht quantifizierte Kongenere (Konzentrationsobergrenze)

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 16 von 18



### TE-Faktoren nach NATO/CCMS (I-TEF) und WHO 2005 (WHO-TEF) sowie Angaben zur relativen erweiterten Messunsicherheit der analytischen Bestimmung der PCDD/F

|                  | Struktur- | TE-Fak            | toren       | Relative<br>Messunsicherheit<br>% |  |
|------------------|-----------|-------------------|-------------|-----------------------------------|--|
| PCDD/F Kongenere | formel    | NATO/CCMS<br>1988 | WHO<br>2005 |                                   |  |
| 2378-TetraCDD    | 000       | 1,0               | 1,0         | 26,7                              |  |
| 12378-PentaCDD   | 000       | 0,5               | 1,0         | 22,8                              |  |
| 123478-HexaCDD   | 000       | 0,1               | 0,1         | 34,1                              |  |
| 123678-HexaCDD   | 000       | 0,1               | 0,1         | 25,9                              |  |
| 123789-HexaCDD   | 000       | 0,1               | 0,1         | 21,6                              |  |
| 1234678-HeptaCDD | 000       | 0,01              | 0,01        | 89,4                              |  |
| OctaCDD          | 000       | 0,001             | 0,0003      | 96,4                              |  |
| 2378-TetraCDF    | 0.0       | 0,1               | 0,1         | 27,0                              |  |
| 12378-PentaCDF   | 0.0       | 0,05              | 0,03        | 23,6                              |  |
| 23478-PentaCDF   | 0.0       | 0,5               | 0,3         | 28,6                              |  |
| 123478-HexaCDF   | 0.0       | 0,1               | 0,1         | 27,9                              |  |
| 123678-HexaCDF   | 0.0       | 0,1               | 0,1         | 21,7                              |  |
| 123789-HexaCDF   | 0.0       | 0,1               | 0,1         | 21,7                              |  |
| 234678-HexaCDF   | 0.0       | 0,1               | 0,1         | 21,8                              |  |
| 1234678-HeptaCDF | 0.0       | 0,01              | 0,01        | 23,5                              |  |
| 1234789-HeptaCDF | 0.0       | 0,01              | 0,01        | 24,8                              |  |
| OctaCDF          | 0.0       | 0,001             | 0,0003      | 25,7                              |  |
| I-TEQ            |           |                   |             | 23,9                              |  |
| WHO-TEQ 2005     |           |                   |             | 23,5                              |  |

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 17 von 18



# TE-Faktoren nach WHO 2005 (WHO-TEF) sowie Angaben zur relativen erweiterten Messunsicherheit der analytischen Bestimmung der dl-PCB (WHO-PCB)

| PCB Kongener   | Strukturformel | WHO 2005 | Relative<br>Messunsicherheit<br>% |
|----------------|----------------|----------|-----------------------------------|
| non-ortho PCB  |                |          |                                   |
| PCB 77         | ~~~            | 0,0001   | 29,3                              |
| PCB 81         |                | 0,0003   | 27,7                              |
| PCB 126        |                | 0,1      | 29,5                              |
| PCB 169        |                | 0,03     | 30,4                              |
| mono-ortho PCB |                |          |                                   |
| PCB 105        |                | 0,00003  | 37,3                              |
| PCB 114        | -              | 0,00003  | 30,7                              |
| PCB 118        | -5-6-          | 0,00003  | 34,2                              |
| PCB 123        | ->->-          | 0,00003  | 50,4                              |
| PCB 156        |                | 0,00003  | 34,3                              |
| PCB 157        |                | 0,00003  | 31,4                              |
| PCB 167        |                | 0,00003  | 27,5                              |
| PCB 189        |                | 0,00003  | 34,7                              |
| WHO-TEQ 2005   |                |          | 28,6                              |

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.

Prüfbericht Nr. 1301 24-2598 P01 Datum: 2024-10-22 • Seite: 18 von 18



Relative erweiterte Messunsicherheit für die Bestimmung von Benzo[a]pyren mittels HRGC/LRMS unter Verwendung eines internen deuterierten Benzo[a]pyren-Standards

| PAK-Komponente | Struktur-<br>formel | Relative<br>Messunsicherheit<br>% |
|----------------|---------------------|-----------------------------------|
| Benzo[a]pyren  |                     | 24,0                              |

Die Messunsicherheit wurde nach DIN ISO 11352:2013-03 abgeleitet. Sie stellt die erweiterte Unsicherheit dar und wurde mit einem Erweiterungsfaktor von k=2 erhalten. Dies entspricht einem Vertrauensniveau von ungefähr 95 %.